
Ž .Journal of Mathematical Economics 32 1999 489–502
www.elsevier.comrlocaterjmateco

Cost sharing: efficiency and implementation
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Abstract

We study environments where a production process is jointly shared by a finite group of
agents. The social decision involves the determination of input contribution and output
distribution. We define a competitive solution when there is decreasing-returns-to-scale
which leads to a Pareto optimal outcome. Since there is a finite number of agents, the
competitive solution is prone to manipulation. We construct a mechanism for which the set
of Nash equilibria coincides with the set of competitive solution outcomes. We define a

Ž .marginal-cost-pricing equilibrium MCPE solution for environments with increasing
returns to scale. These solutions are Pareto optimal under certain conditions. We construct
another mechanism that realizes the MCPE. q 1999 Elsevier Science S.A. All rights
reserved.

JEL classification: D51; D61; D78

Keywords: Cost sharing; Marginal-cost-pricing equilibrium; Increasing returns to scale

1. Introduction

The sharing of costs is prevalent in many facets of economic activity. Large
enterprises allocate overhead costs among various departments. Members of a
university share the cost of a software site license. The parties watching a
pay-per-view boxing match share the fee.
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Issues of cost sharing surface explicitly as well as implicitly. The problem
arises explicitly whenever a group of individuals jointly uses a common resource

Ž .or undertakes a joint project for an excellent survey, see Young, 1994 . A
cost-sharing method arises implicitly in any private-ownership competitive econ-
omy. In such an economy, an individual’s share of the production costs of a firm
is the amount he pays for goods purchased minus the profits he earns from shares
owned in that firm.

The properties of the cost-sharing method are of major concern. Does it lead to
efficient outcomes? Is the outcome unique? Can it be manipulated by the

Ž .individuals involved? Moulin and Shenker 1992 provide the serial cost-sharing
method and have demonstrated its appeal as far as manipulability and uniqueness

Ž . Ž .are concerned. Moulin and Shenker 1994 and Moulin and Watts 1997 analyze
more traditional methods such as average cost sharing. Both serial and average
cost sharing do not guarantee Pareto optimality. Our contribution is to present two
mechanisms that will generate Pareto optimal outcomes for several classes of
environments. We start by observing that in a neoclassical economy, the implicit
cost sharing mentioned above implies efficiency. A cost-sharing method that
attempts to replicate a neoclassical economy by creating a fictitious firm would
have two shortcomings: manipulation may exist with a finite number of individu-
als and convexity of the technology is required. Both manipulation and non-con-
vexity may lead to an undesirable outcome, while non-convexity may also lead to
nonexistence of equilibria. We suggest two cost-allocation mechanisms that obtain
efficient outcomes by imitating implicit cost sharing and addressing both prob-
lems.

The manipulation issue is resolved in part by eliminating the market power
possessed by the individuals. To address the nonexistence issue, we resort to
marginal-cost-pricing equilibria that exist for a large class of non-convex environ-

Ž .ments see Brown, 1991 .
The paper proceeds as follows. In Section 2, we present the competitive

solution. In Section 3, the competitive solution is implemented and the resulting
mechanism is compared to other cost-sharing methods. In Section 4, we address
the problems created by increasing returns to scale. Finally, in Section 5, we
conclude the paper and mention further directions of research.

2. Allocation of costs—the competitive solution

The large variety of cost-allocation problems makes it intractable to present a
general method to allocate costs efficiently. In this section, we define the class of
environments that we analyze in this paper. Then, we introduce the competitive
solution concept for this class. We show that for a subclass the competitive
solution yields efficient allocations only when ignoring possible manipulation by
individuals.



We consider a class of cost allocation problems 1 where there is a finite
number N of individuals, greater than 2, that consume two goods, x and y, and

Ž X. Xhave access to technology c: R ™R , where c y is the cost of producing yq q
units of good y. The preferences of each individual i can be represented by a

iŽ i i.utility function u x , y where utility is strictly increasing, differentiable,
Ž iŽ i i. i Ž i i.i iconcave and satisfies the Inada conditions lim u x , y s lim u x , yx ™ 0 1 y ™ 0 2

iŽ i i. i Ž i i. .i is`, lim u x , y s lim u x , y s0 . The individuals are endowedx ™` 1 y ™` 2

with strictly positive amounts wi of good x and none of good y. An allocation is
ŽŽ i i.N .given by a 2 Nq2-tuple x , y , x , y where the first N componentsis1 p p

denote the individuals’ consumption levels and the last two components the
production levels. The allocation is feasible if:

N N
i ix qx F wÝ Ýp

is1 is1

N
iy FyÝ p

is1

c y Fx .Ž .p p

A feasible allocation is Pareto optimal if there does not exist a feasible
allocation which makes no individual worse off and at least one individual strictly
better off.

Ž .We will say the cost-allocation problem belongs to class D I if the cost
Ž . Ž .function is differentiable and convex concave , with c 0 s0. In the first case, we

are in the decreasing-returns-to-scale scenario, whereas in the second case, produc-
tion is characterized by increasing returns to scale.

In order to define a competitive solution, we need to create a firm that owns the
technology and endow individuals with strictly positive ownership shares ai. A

ŽŽ iX iX.N X X . Xcompetitive solution is a feasible allocation x , y , x , y and a price pis1 p p
Ž . Xfor good y in terms of good x such that given the price p , the firm is
maximizing its profits and the individuals are maximizing their utility subject to
their budget constraints:

Ž X X .x , y solvesp p

max pX y yxp p
x , yp p

s.t. c y FxŽ .p p

1 ŽThese problems encompass both traditional cost sharing when individuals demand outputs and the
. Žmechanism determines inputs and surplus sharing when individuals supply inputs and the mechanism

.determines outputs . Our mechanism can be interpreted as a hybrid construction since it determines
both inputs and outputs.



Ž iX iX.x , y solves

max ui x i , y iŽ .
i ix , y

s.t. x i qpX y i Fwi qaipp

where p denotes the profits of the ‘firm’.p
Ž .When the competitive solution exists this is guaranteed only in class D , the

standard arguments leading to the First Welfare Theorem show that the competi-
tive solution yields a Pareto optimal allocation.

Proposition 1. All competitiÕe solutions for a giÕen cost allocation problem are
Pareto optimal.

Restricting attention to the class D of cost-allocation problems, the competitive
solution exists and generates an allocation with an implicit sharing of costs. The
cost of production implicitly imposed on individual i is the difference between i’s
expenditures on y and i’s share in the profit. The specific allocation realized
depends upon the ownership structure and may not possess an axiomatic character-
ization like several cost allocation methods put forward in the literature. It is,
however, Pareto optimal. This may seem to be a viable method to reach an
efficient cost allocation, but strategic behavior by the individuals may undermine
the efficiency. An individual, by misrepresenting his preferences, may be able to
secure an outcome preferable to the competitive cost allocation achieved with his
true preference. Several papers have addressed the incentives problem inherent in

Žthe Walrasian paradigm for pure exchange economies Hurwicz, 1979; Schmei-
. Ždler, 1980; Postlewaite and Wettstein, 1989 and for production economies Hong,

.1995 . In Section 3, we offer a continuous and feasible mechanism that would
realize the competitive solution to the cost allocation problem. All the Nash
equilibria of this mechanism yield Pareto optimal outcomes.

( )3. Realization of the competitive solution mechanism A

Mechanism A consists of an n-tuple of strategy sets and an outcome function
mapping strategies into allocations. The strategy space of individual i is Si s

2 Ž i i i i.R =R =R=R with a generic element denoted by p , c , t , r . Theqq qq
first component is a price for commodity y submitted by individual i, the second
is a net consumption bundle, the third is an input level into the production process,
and the fourth is a number used in averaging out the possibly conflicting demands
of all the individuals.

We will now outline the way mechanism A operates informally, before we
formally describe it. The mechanism constructs an average price based on the
announced prices and an average production plan based on the announced
production plans. The required amount of input, specified in the production plan,
is collected from the individuals and used in production. Individual budget sets are



constructed based on the average price and the profits generated from the
production plan. The consumption bundles requested are projected onto these
budget sets. The resulting bundles may not be feasible in the aggregate, but
aggregate feasibility is reached by scaling down the bundles.

We assume the individuals are completely informed as regards the technology,
preferences and endowments. We also assume the designer knows the individuals’
initial endowments, but we do not assume that the designer knows the technology. 2

Notice that the firm is a fictitious entity, which is created in order to define the
outcome function. It is thus controlled by the designer and has no strategic role.

We show that mechanism A has Nash equilibria that are all competitive
solutions, thereby, yielding an efficient solution to the problem of cost allocation.
In order to present more clearly the formal description of the mechanism, we will
proceed in several steps even though the mechanism itself is a one-stage game.

Step 1: An average price p is constructed as follows.

Define:
N

X 2i t t i< <a s p yp ; as aÝ Ý
Xt , t /i is1

a i
ib s a)0

a

1
s as0

N
N

i ips b pÝ
is1

The construction of p implies that if all individuals other than individual i
announce the same price q, the average price constructed will be q and further-
more, individual i’s announcement will have no effect on the price reached.

Ž .Step 2: The production plan x , y used by the mechanism is determined by:p p

N N N N
i i y1 i ix , y s min w ,max 0, t ,c min w ,max 0, tŽ . Ý Ý Ý Ýp p ½ 5 ½ 5½ 5 ½ 5ž /ž /

is1 is1 is1 is1

The appearance of the cost function in the production plan does not imply that
the designer needs to know the technology. The operation of the mechanism

2 Knowledge of initial endowments can be relaxed at the cost of a more complicated mechanism that
Ž .would handle destruction and withholding of initial endowments as in the work of Hong 1995 .

Furthermore, note that each individual needs only to know the set of preferences and endowments that
Ž .exist in the entire society and not the specific preference or endowment for any particular other

individual.



reveals the value of c at a single point—the production point yielded by the
choices of the individuals.

Ž .Step 3: N individual budget sets are constructed elements are net trades ,
based on the average price and the production plan:

i° ¶z qpz Fa py yxŽ .1 2 p p

N
i 2 i i i~ •B p s z , z gR z qw F w yx ; z qw G0Ž . Ž . Ý1 2 1 p 1

is1¢ ßz Fy ; z G02 p 2

Let Õ i be the closest point in Bi to ci. In order to insure the final allocation is
feasible, the following set J is constructed:

i° ¶rPr F1 for is1 . . . , N
N N N~ •Js rgR i i i i i iqq r r Õ qw F w ; r r Õ FyŽ .Ý Ý Ý1 2 p¢ ß

is1 is1 is1

Let rsmax r.ˆ r g J

The N bundles allocated to the individuals by the mechanism are:

g i srPr i Õ i qwi ; g i srPr iÕ i for is1, . . . , N.ˆ ˆŽ .1 1 2 2

The mechanism in addition to the individuals’ utility functions constitutes a
well defined game. We analyze the Nash equilibria of games resulting from our
mechanism A. Several other solution concepts like subgame perfect equilibria
Ž .Moore and Repullo, 1988; Abreu and Sen, 1990 and more recently Varian, 1994 ,

Ž .equilibria in undominated strategies Palfrey and Srivastava, 1991 and virtual
Ž .‘equilibria’ Matsushima, 1988 and Abreu and Sen, 1991 have been used to

analyze mechanisms in the literature. Mechanisms relying on these solution
concepts may require more stringent informational assumptions or larger strategy
spaces. Next, we will show that all Nash equilibria generated by our mechanism
give rise to Pareto optimal allocations.

Proposition 2. For any cost allocation problem in D, the Nash equilibria of the
mechanism constructed aboÕe yield a competitiÕe solution that is Pareto optimal.

X X X X X X Xi i i NŽ .Proof. Denote p , x , y , r , r and x , y as the values and allocationsˆp p is1

generated at the Nash equilibrium point. We show this is a competitive solution
via the following lemmata.

XiŽ .Lemma 1. IndiÕidual i can get arbitrarily close to any point u in B p .



Proof. Announcing the net trade leading to u as ci and a large enough r i will
generate an outcome arbitrarily close to u . The large r i nullifies the effect of all
the other terms in the construction, and the calculation of the final bundles
allocated to the individuals will leave individual i arbitrarily close to u .B

Xi( )Lemma 2. IndiÕidual i can generate a B p that contains net trades leading to
strictly positiÕe consumption bundles for himself giÕen any choice of strategies by
the other indiÕiduals.

Xi iProof. Since w )0 and p )0 individual i can, by sending in an appropriate t ,
force a production plan that has x and y strictly positive and yields a positivep p

Žincome level for consumer i even if profits are always negative, it is possible to
.choose a small enough production level to guarantee positive income . This

XiŽ .implies that B p contains net trades that lead to strictly positive consumption
bundles for individual i.B

ŽŽ iX iX.NLemma 3. The equilibrium allocation must be strictly interior x , y gis1
2 N .R .qq

Proof. Assume by way of contradiction, there exists an individual i for whom
Ž iX iX. 2x , y fR . By Lemma 2, individual i can, by sending in a possiblyqq

Xi iŽ .different t , obtain a B p that contains net trades leading to strictly positive
consumption bundles. Any one of those consumption bundles is strictly preferred

Ž iX iX.to x , y . By Lemma 1 and continuity of preferences, there exists an obtainable
consumption that is preferred to the equilibrium consumption. This contradicts that
individual i was playing a Nash equilibrium strategy. Hence, the equilibrium
outcome entails a strictly interior allocation.B

X X X( )Lemma 4. The production plan x , y maximizes profits under price p .p p

Ž .Proof. Assume, by way of contradiction, there is a production plan x , y that˜ ˜p p
Ž X Ž . X Ž . .yields higher profits. Any point of the form l x q 1yl x , l y q 1yl y˜ ˜p p p p

with 0-l-1 yields higher profits by convexity of the cost function. By Lemma
3, there exists a l close enough to 1, where such a point is feasible. By Lemma 2,
any individual could obtain this point by altering the t i message. Thus, individual

XiŽ .i expands the B p set, and by Lemma 1 and continuity of preferences can
obtain a preferred outcome, in contradiction to the original outcome being an
equilibrium outcome.B

( iX iX)Lemma 5. The consumption plan x , y maximizes indiÕidual i’s utility subject
X X X( )to the budget constraint with price p and production plan x , y .p p



Ž i i.Proof. Assume, by way of contradiction, there is a consumption plan x , y that˜ ˜
Ž iX iX.satisfies individual i’s budget constraint and is strictly better than x , y . By

X X Xi i iŽ . Ž .Lemma 3, only the first constraint in B p can be binding at the point x , y .
Ž iX Ž . iBy this fact, there exists a l close enough to 1 such that l x q 1yl x ,˜

X Xi i iŽ . . Ž .l y q 1yl y belongs to B p . By convexity of preferences, this point is˜
Ž iX iX.preferred to x , y . By Lemma 1 and continuity of preferences, this contradicts

that individual i is playing a Nash equilibrium strategy.B

By Lemmata 4 and 5, any equilibrium is a competitive solution and by
Proposition 1, this solution yields a Pareto optimal allocation.B

The result of Proposition 2 may be vacuously satisfied if the mechanism
suggested does not possess any Nash equilibria. We show that this is not the case.
Given our assumptions, a competitive solution always exists. Proposition 3 shows
that any competitive solution is a Nash equilibrium. Hence, the mechanism
possesses a Nash equilibrium.

Proposition 3. For any cost-allocation problem in D, the set of competitiÕe
solutions is contained in the set of Nash equilibria outcomes of mechanism A.

X ŽŽ iX iX.N X X . XProof. Let A s x , y , x , y and price p constitute a competitiveis1 p p
i X i Ž iX i iX. i Xsolution. A set of strategies realizing it is: p sp ; c s x yw , y ; t sx rN;p

r i s1 for all i. This N-tuple of strategies yields the average price pX and the
consumption–production allocation AX. We now show that these strategies form a
Nash equilibrium, since they are best responses. First, we note that an individual is
unable to change the price constructed, pX. Second, the production plan in AX

maximizes profits given pX; thereby, an individual’s choice of t i gives him the
largest budget set. Finally, the choice of ci and r i leads to the most preferred
consumption bundle in the budget set. Therefore, changes in ci, t i or r i will not

Ž iX iX.improve upon the x , y outcome for individual i.B
The main features distinguishing mechanism A from other cost-allocation

methods is the Pareto optimality of the outcome reached and the relaxation of
informational assumptions. In contrast to other cost-sharing methods, our mecha-
nism by virtue of coinciding with competitive solutions yields Pareto optimal
levels of y. Furthermore, its operation does not require the designer to know the
technology, as assumed with serial cost sharing. Mechanism A, on the other hand,
is not immune to coalitional deviations like the serial cost-sharing method and is
more complex than the previous methods suggested.

The mechanism’s optimality of outcomes and existence of a solution critically
depend upon the assumption of convexity of the technology. This phenomena is
parallel to the one encountered in a competitive economy. Section 4 specifies

Žsolution concepts appropriate for environments with increasing returns non-con-
.vexities and discusses their implementation.



4. Increasing returns to scale

In this section, we consider the allocation of costs in environments with
increasing returns to scale. We use the analogy of these cost allocation problems to
economies with increasing-returns-to-scale production to suggest a solution. A
common construct for such production economies is a marginal-cost-pricing

Ž .equilibrium MCPE . This consists of dictating the production plan of the firm and
allowing the individuals to purchase goods at marginal cost after paying for their
share of the firm’s losses. Existence of such equilibria under certain conditions has

Žbeen shown in a series of papers Mantel, 1979; Beato, 1982; Kamiya, 1988a;
.Bonnisseau and Cornet, 1990 . Also, the optimality of these equilibria is guaran-

teed with stringent enough conditions on the curvature of the indifference curves
Ž .and production possibility frontiers Dierker, 1986; Quinzii, 1991 . Further results

Ž .can be found in the work of Cornet 1990 . Hence, a device that leads to
marginal-cost-pricing equilibria would be an interesting solution to cost-sharing
problems.

As before, the standard construction ignores the possibility of manipulation by
the individuals. To address this issue, we provide a continuous, feasible and

Ž .finite-dimensional mechanism that realizes the MCPE solution. Calsamiglia 1977
demonstrates that in the presence of increasing returns to scale it is impossible to
obtain Pareto optimal outcomes via a finite-dimensional mechanism. Our mecha-
nism is compatible with this result, since the MCPE that it yields is not always
Pareto optimal.

In order to define an MCPE solution, we create a fictitious firm and endow
i wi 3individuals with strictly positive ownership shares given by a s . Alterna-

N jÝ wjs 1

tively, we can choose a desired share structure ai and redistribute endowments as˜
wi saiÝN w j. An MCPE solution is a feasible allocation and a price of y where˜ ˜ js1

the price equals the marginal cost of production, the firm carries out the prescribed
production plan and the individuals maximize utility subject to their budget
constraints. These constraints incorporate both the price and their share of the
Ž . ŽŽ iXnegative profits. Formally, the MCPE solution is a feasible allocation x ,

iX.N X X . X X XŽ X . Ž iX iX.y , x , y and price p where p sc y and x , y solves:is1 p p p

max ui x i , y iŽ .
i ix , y

s.t. x i qpX y i Fwi qaipp

where p denotes the profits of the ‘firm’.p

3 The creation of shares in this manner prevents individuals from going bankrupt when held
responsible for the firm’s losses. This is a version of the survival assumption, which appears in the

Žexistence proofs for MCPE Mantel, 1979; Beato, 1982; Kamiya, 1988a; Bonnisseau and Cornet,
.1990 . A counter-example for nonexistence when the survival assumption does not hold is provided by

Ž .Kamiya 1988b .



The cost of production imposed on individual i by this solution is the sum of
i’s expenditure on y and i’s share in the losses.

We cannot achieve these outcomes in a straightforward manner due to possible
misrepresentation of preferences by the individuals. In order to prevent these
problems, we offer a continuous and feasible mechanism implementing MCPE
solutions.

4.1. Mechanism B

Except for the construction of the budget sets, mechanism B is defined just like
the mechanism implementing the competitive solution. The first constraint in the

Xi i yi y iŽ . Ž .construction of B p in Section 2 is replaced with z qpz F2 a py yx1 2 p p
iŽ .ya py yx , where:p p

N
yi yi i jx , y s min w , max 0, t ,Ž . Ý Ýp p ž /½ 5ž is1 j/1

N
y1 i jc min w , max 0, tÝ Ýž /½ 5ž / /is1 j/1

The RHS is twice the profits of the firm at the production plan determined by the
announcements of all individuals other than i minus the profits of the firm at the
production plan determined by the announcements of all individuals, with all terms
adjusted for feasibility.

In equilibrium, all individuals announce the same production plan. When this
occurs, the designer can construct the budget sets with only the knowledge gained
from producing the announced plan and does not need to know the whole

Žtechnology as before, the designer should be able to measure the output that is
.eventually produced . Outside of equilibrium, individuals may not announce the

same production plan. In this case, the designer needs to know the technology at
several points, that is, he should be able to discover the output that would be
produced for several different levels of inputs in order to construct the outcome
function. For some finite cost he should be able to obtain this information, for
instance, by either rerunning the technology for several points or stopping the
technology at several levels of input. Doing so for the entire curve may entail
infinite costs, which would not be a credible option even outside of equilibrium.

Ž .These requirements both inside and outside equilibrium are noticeably weaker
than having to know the entire production technology. 4

4 An alternate route to revealing the entire technology can be achieved by appending to the
Ž .mechanism a game similar to the Hurwicz–Maskin–Postlewaite Hurwicz et al., 1995 construct.



The Nash equilibria resulting from mechanism B are shown to be MCPE
solutions in Proposition 4. In Proposition 5, we show that any MCPE solution for
the cost allocation problem can be realized as a Nash equilibrium of the mecha-
nism.

Proposition 4. For any cost-allocation problem in I, the Nash equilibria of
mechanism B yield an MCPE solution.

Proof. The proof coincides with the proof of Proposition 2 except for Lemmata 2
and 4.

Xi( )Lemma 2. B p contains net trades leading to strictly positiÕe consumption
bundles for indiÕidual i.

Proof. We consider three distinct cases:

Ž . y i N ii Case 1: 0-x -Ý wp is1

Individual i can, by adjusting the t i announcement, set y sy y i and x sx y i,p p p p

hence both x and y are strictly positive. Letting z sywi and z s0 turns thep p 1 2
iX Xi i wŽ . Ž .first inequality in the definition of B p into yw F p y yx or 0p p

N iÝ wis 1
i XN i N iw Ž .F Ý w yx qp y . The RHS is strictly positive since x -Ý w .is1 p p p is1

N iÝ wis 1
Xi iŽ .Hence, B p contains net trades where z )yw and z )0. These net trades1 2

lead to strictly positive consumption bundles for individual i.

Ž . y i N iii Case 2: x sÝ wp is1

Once more, individual i can by adjusting the t i announcement set y sy y i
p p

and x sx y i. Individual i would then have an individual budget constraint forp p
XiŽ . Ž .B p mentioned above that would allow for positive consumption of both

XiŽ .goods. However, the aggregate constraints in B p would restrict the individual
to receive zero consumption of the x good. By submitting in a smaller t i such that
x -x y i, the individual can relax the aggregate constraints while still keeping thep p

individual budget constraint not binding. This would allow strictly positive
consumption of both goods.

Ž . y iiii Case 3: x s0p
i iŽ .The first term on the RHS is zero leaving ya py yx . Since w )0 andp p

Xp )0 individual i can, just as before, choose a strictly positive production plan
Xi iŽ . Ž .that leaves him with strictly positive income including w . Thus, B p contains

net trades leading to strictly positive consumption bundles.B



X X X X X( ) ( )Lemma 4. The production plan x , y is such that c y sp .p p p

Proof. The negative profit of the firm is in the individual budget constraint for
XiŽ .B p . By the same argument as in Lemma 4 of Section 3, the individual would

be able to expand his budget set if losses were not maximized. Maximization of
X X XŽ .losses implies the condition c y sp .Bp

This demonstrates that the Nash equilibria outcomes of mechanism B constitute
MCPE solutions.B

Proposition 5. For any cost-allocation problem in I, the set of MCPE solutions is
contained in the set of Nash equilibria outcomes of mechanism B.

Proof. Similar to previous proofs.B

5. Conclusions

In this paper, we study the allocation of costs for environments with both
decreasing and increasing returns to scale. In the decreasing-returns-to-scale case,
we construct a mechanism that leads to Pareto optimal outcomes, correctly
recognizing the incentives of individuals. In the increasing-returns-to-scale case,
Pareto optimality is harder to achieve. We construct a mechanism that leads to
marginal-cost-pricing equilibria that generate Pareto optimal outcomes under
certain conditions. The existence of such a construction further justifies the MCPE
concept.

The outcomes of previously suggested mechanisms are not guaranteed to be
Pareto optimal even in the decreasing-returns-to-scale case. Furthermore, in con-
trast to previous mechanisms, our cost-sharing mechanisms do not require the
designer to know either the technology or individual preferences. Whether or not
there exists a mechanism that is superior to ours for environments where MCPE
outcomes fail to be Pareto optimal is a question of interest.

One also may be interested in the equity properties of our mechanism. Such
issues can be used to determine share ownership with decreasing-returns-to-scale.
This is not an option in our mechanism for increasing-returns-to-scale where share
ownership is proportional to endowments; however, since profits are negative,
individuals with higher endowments bear a larger cost.

The construction technique we use is not limited to the specified environment.
Extending the mechanism to environments with more than two goods or multiple
technologies is straightforward. Creating a similar mechanism to allocate resources
when externalities are present is also possible. Modifying the mechanism to handle
asymmetrically informed individuals involves major changes as well as moving to
the Bayes–Nash equilibrium concept and remains a topic of further research.
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