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Abstract

Conditions are derived for the consistency of kernel estimators of the variance of a sum of dependent
heterogeneous random variables, with a representation as moving averages of near-epoch dependent
functions of a mixing process. Fourth moments are not gnerally required. The conditions permit
more dependence than a purely nonparametric representation allows, and may be close to those of the
best-known conditions for the functional central limit theorem. The class of permitted kernel functions
is different from those usually considered, but can approximate most of the usual choices arbitrarily
closely, and can be extended to include them subject to a seemingly innocuous extra condition on the
random process.

1 Introduction

Suppose that {Xt, t = 1, ..., n} is a sequence of zero-mean random variables, and s2
n = E(

Pn
t=1Xt)

2, and
a functional central limit theorem (FCLT) holds for these data, such that if

Xn(r) = s
−1
n

[nr]X
t=1

Xt 0 ≤ r ≤ 1 (1.1)

then Xn
d→ B, where � d→� denotes convergence in distribution and B is Brownian motion on the unit

interval. Of course, the special case of Xn(1)
d→ B(1) is the regular central limit theorem (CLT). Recent

work by the authors (De Jong 1997, De Jong and Davidson 2000b) has studied sufficient conditions for
weak convergence in a nonparametric setting, adopting the concept of near-epoch dependence on a mixing
process to constrain dependence. Davidson (2002) considers how these conditions may be established in
the context of nonlinear time series processes. He also considers semiparametric linear processes, whose
driving processes may exhibit unspeciÞed nonlinear dependence, and gives conditions for that case which
appear close to necessary.
To make use of these results for asymptotic statistical inference, however, we must possess a consistent

estimator �sn of sn. Without a parametric setup, kernel estimators are the natural vehicle for this type
of analysis. For example, they are sufficient to compute the Phillips-Perron (1988) test of the unit root
hypothesis, the Kwiatkowski, Phillips, Schmidt and Shin (1992) test of the I(0) hypothesis, the Phillips-
Ouliaris (1990) nonparametric tests for cointegration, the fully modiÞed least squares estimator of Phillips
and Hansen (1990), and related procedures.
Therefore, a key question in this type of analysis is whether sufficient conditions for the various modes

of weak convergence are also sufficient for the consistency of the variance estimator. Among studies that
have analysed the consistency of kernel estimators are Newey and West (1987), Gallant and White (1988),
Andrews (1991), Pötscher and Prucha (1991), Andrews and Monahan (1992), Hansen (1992), and De
Jong and Davidson (2000a). However, all these studies impose conditions stronger than the best-known
conditions for the application of a FCLT or CLT to the same variables. These issues are discussed in De
Jong and Davidson (2000a), where it is noted that the previous studies impose either a form of stationarity,
or uniform boundedness in Lp-norms for some p ≥ 2, precluding the possibility of trending moments. All
except Pötscher and Prucha (1991) assume that the random variables considered are strong or uniform
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mixing and that the true variance converges to some well-deÞned limit. All except Hansen (1992) assume
that the random variables under consideration possess Þnite fourth moments.1 All these conditions can
be relaxed for the proof of the CLT (see Davidson 1992, 1993 and De Jong 1997), and many of them also
for the FCLT (De Jong and Davidson 2000b).
De Jong and Davidson (2000a) presents a consistency theorem under conditions similar to those of

the latter weak convergence results, which are the best such conditions currently known to us when the
representation of the dependence is purely nonparametic. That result is given for near-epoch dependent
functions of mixing processes, and for the class of kernel estimators for which the kernel function possesses a
positive Fourier transform, equivalent to the class that necessarily generate positive semideÞnite covariance
matrix estimates. In this paper, we establish a comparable result for the semiparametric linear processes
of the type analysed in Davidson (2002). The processes are moving averages with absolutely summable
coefficients of sequences of the general type dealt with in our earlier paper. Linear processes driven
by underlying shock sequences with a nonlinear and possibly unknown dependence structure (GARCH,
threshold effects, and the like) are often encountered in the applied literature, and Davidson (2002) shows
how such processes may satisfy our present assumptions. Applications apart, however, an important
motivation for our work is to demonstrate how the amount of dependence permitted to the series may be
extended, critically, by restricting the type of dependence.
The assumptions and main theorem are stated in Section 2, and we give an extension to processes

depending on estimated parameters in Section 3, applying results from our previous work. Our basic
assumptions are pitched at quite a high level, and we discuss and illustrate these in Sections 4 and 5. We
show here that the leading cases are closely comparable to those of the existing literature. Our motivation
is to pinpoint the restrictions that bind, and so facilitate relaxing these in future work. The proof of
the theorem and associated lemmas is given in Section 6. This proof is completely different from that of
our previous result and in principle is more straightforward, being based on a blocking argument and an
existing law of large numbers given in De Jong (1997).
We adopt a class of kernel estimators that has not been explicitly considered in previous work. In

fact, our basic result speciÞcally applies to cases exhibiting discontinuities, such as the uniform kernel,
which most of the above-cited work has ruled out. However, subject to an extra condition that appears
innocuous although is difficult to establish in a wholly general context, our kernel class can be extended
to include most of the popular cases.
Our analysis is carried out for the case of scalar Xt. Whilst many applications of this theory are

multivariate, we note that results for the scalar case might be applied to Xt = a0Yt where Yt and a are a
random vector and an arbitrary constant vector of the same order. As pointed out by Newey and West
(1987), the extension of our results to the multivariate case is therefore very straightforward, and we do
not consider it explicitly.

2 Main Result

The estimators to be considered have the generic form

�s2
n =

nX
t=1

X2
t + 2

γnX
m=1

k(m/γn)
n−mX
t=1

XtXt+m. (2.1)

where k(x) is the kernel function. Thus the products XtXt+m for m > γn (the bandwidth) are excluded
from the estimator. 2

The time series is assumed to take the following form.

Assumption 2.1 (a) Xt =
P∞
j=0 θjUt−j where

P∞
j=0 |θj | <∞.

(b) E(Ut) = 0, and there exists a positive constant sequence ct such that {Ut/ct} is Lr-bounded, r ≥ 2,
uniformly in t.

1See de Jong (2000) for a correction of the Hansen (1992) result.
2Using this notation, it is not necessary to consider the case x < 0.
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(c) Ut is L2-near epoch dependent3 of size −1
2 with respect to constants dt on either an α-mixing sequence

of size −r/(r − 2), with r > 2, or a φ-mixing sequence of size −r/2(r − 1)), with dt/ct bounded
uniformly in t. Under φ-mixing, r = 2 is permitted if {Ut/ct} is uniformly integrable.

(d) If γn is the bandwidth sequence specified in (2.1) then

sup
−∞≤i≤[n/γn]+1

Mni = o(γ
−1/2
n ), (2.2)

sup
h≥0

[n/γn]+1X
i=1

M2
n,i−h = O(γ

−1
n ), (2.3)

where
Mni = max

(i−1)γn+1≤t≤iγn

ct/sn. (2.4)

The restrictions relating to the kernel function are as follows.

Assumption 2.2 Defining the class of kernels T = {k : [0, 1] 7→ R, left continuous, with k(0) = 1, and
continuous at 0 and all but a finite number of points }, let one of the following conditions hold:

(i) For some M <∞, the kernel belongs to the class

TM = {kM : kM(x) = k(j/M), j/M ≤ x < (j + 1)/M, j = 0, ...,M − 1, k ∈ T }. (2.5)

(ii) The kernel is k ∈ T and

1

s2
nmax1≤m≤γn

|anm|
γnX
m=1

anm

n−mX
t=1

XtXt+m = Op(1) (2.6)

as n→∞, where
anm = kM (m/γn)− k(m/γn)

for some kM ∈ TM defined by (2.5), and M <∞.

The left continuity is just for convenience here, and could be replaced by right continuity by re-working
the argument.
Finally, the bandwidth must satisfy at least the following minimal condition.

Assumption 2.3 γn →∞ and γn/n→ 0, as n→∞.

We will call kernels of the class T truncated. The member of the class usually called the �truncated�
kernel, having k(x) = 1 for 0 ≤ x < 1 (and hence also belonging to TM) should be called the uniform
kernel, in this context. Given the truncation requirement, T is as large a class of kernel functions as can
reasonably be speciÞed. Of the popular choices listed by Andrews (1991), the uniform, Bartlett, Parzen
and Tukey-Hanning kernels all belong to T , although the Quadratic Spectral kernel does not. All these
cases except the uniform kernel (which is not guaranteed to yield a positive estimate) are also covered by
the results of De Jong and Davidson (2000a).
Letting

pr−→ denote convergence in probability, our result can now be stated as follows.

Theorem 2.1 If Assumptions 2.1, 2.2 and 2.3 hold then

�s2
n

s2
n

pr−→ 1. (2.7)

This result establishes, for example, the asymptotic distribution of the computable quantities �s−1
n

P[nr]
t=1Xt,

given that the FCLT holds. Note that for this purpose, it is not necessary to show that �s2
n/n−s2

n/n
pr−→ 0,

nor need s2
n/n converge, nor be uniformly bounded away from either inÞnity or zero. This is important,

since such behaviour is not incompatible with the CLT, at least.4

3Lp-near epoch dependence is the property kXt − Et+m
t−mXtkp ≤ dtνm where dt is a sequence of positive constants and

νm → 0. See for example Davidson (1994) for details.
4 It is incompatible with the usual FCLT, in the sense of weak convergence to B. See Davidson (1994) Section 29.4 for

details
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3 Estimated Parameters

It is desirable to extend the results to allowXt to depend on estimated parameters, and allow the bandwidth
to depend on a sample-dependent scale factor. However, a number of results of this type exist, such as
(respectively) Theorems 2.2 and 2.3 of De Jong and Davidson (2000a). Rather than attempt new proofs
under the different kernel assumptions of the present paper, we point out that for the class of kernels
T ∩K where the class K is deÞned in Assumption 1 of De Jong and Davidson (2000a), the two results cited
extend to the present case, under our Assumption 2.2(ii), together with Assumption 4 of the cited paper.
Of the cases listed following Assumption 2.3, only the uniform kernel is excluded by these assumptions,
which in any case is not a recommended choice for the reason mentioned. Be careful to note however that
the subclass TM of Assumption 2.2(i) is ruled out, because the kernels in class K are continuous.
We give these facts a formal statement, as follows. Let Xt(θ) represent a process depending on an

unknown parameter with true value θ0, let �θn denote a consistent estimator of θ0, let the bandwidth be
chosen as �αnγn where �αn is a sample-based stochastic sequence, and let the kernel estimator depending
on these quantities be denoted

�s2
n(
�θn, �αn) =

nX
t=1

Xt(�θn)
2 + 2

[α̂nγn]X
m=1

k(m/(�αnγn))
n−mX
t=1

Xt(�θn)Xt+m(�θn). (3.1)

Theorem 3.1 If in (3.1)

(a) the kernel function satisfies Assumption 2.2, and also Assumption 1 and conditions (2.11) and (2.12)
of De Jong and Davidson (2000a);

(b) γn satisfies Assumption 2.3, �αn = Op(1), and �α−1
n = Op(1);

(c) Xt(θ0) satisfies Assumption 2.1 with respect to γn;

(d) Xt(θ) and �θn satisfy Assumption 4 of Davidson and de Jong (2000a);

then
�s2
n(
�θn, �αn)

s2
n

pr−→ 1.

For the convenience of readers, the cited assumptions from De Jong and Davidson (2000a) are summarised
in the Appendix. The proof of Theorem 3.1 is by applying Theorems 2.2 and 2.3 of the same paper. Note
that the proofs of these latter results depend on assumptions other than Assumption 4 only to establish
the consistency of the estimator corresponding to �s2

n. In the present context, this result can be replaced
by Theorem 2.1, applied pointwise for the case of bandwidths αγn where ε < α < 1/ε for ε > 0.

4 Discussion of Assumption 2.1

The conditions in Assumption 2.1 are similar to those given for the FCLT in Davidson (2002), Theorem
3.1. In the latter result the restrictions on the heterogeneity of the sequence are stronger but the restriction
on dependence somewhat milder. Absolute summability of the moving average coefficients is not required,
although the actual restriction is stronger than square summability. It is worth noting that the absolute
summability condition is needed here to validate an application of the triangle inequality (see the proof of
Lemma 6.2 below) which does not appear sharp. It is an interesting conjecture that the same conditions
suffice for each result, especially since those for the FCLT appear close to necessary. We have not been
successful in showing this as a general result, but it should not be too difficult to validate examples such
as those discussed in Davidson (2002), Section 3, in which the sign of θj switches periodically. This would
involve taking the terms of the moving average in blocks whose sum converges absolutely.
Assumption 2.1 allows variances with either positive or negative trends, the case EU2

t = tα being
covered for any α > −1, or in other words, such that s2

n increases. By contrast, Assumptions 2 and 3
of de Jong and Davidson (2000a) allow any rate of increasing trend, but not negative trend. In these
cases the FCLT does not hold, in the sense that the limit process is not Brownian motion (see for example
Davidson 1994, Section 29.4) although the CLT does hold. Assumption 2.1(d) may then imply an additional
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restriction on the bandwidth, as shown in Davidson (1993). If the sequence ct is uniformly bounded away
from both 0 and ∞, on the other hand, then equations (2.2) and (2.3) hold for any bandwidth satisfying
Assumption 2.3. In practice, considerations such as reducing the mean squared error of estimate (assuming
fourth moments of the data exist) may dictate particular choices of bandwidth. See Andrews (1991) and
Newey and West (1994) for details of these procedures.
A difference between these assumptions and their counterparts in De Jong (1997) is that the lower

limit of the supremum in (2.2) is extended from 1 to −∞, with a related modiÞcation to (2.3). Only the
case h = 0 is considered in De Jong (1997). These extensions are needed to allow for models explicitly
involving inÞnite lags, as in Assumption 2.1(a). Note that if the moving average is actually truncated,
with θj = 0 either for j > 0 (the case Xt = Ut), or beyond some Þnite lag, then the Ut process can be
set to 0 prior to the truncation point. Therefore, for such processes, (2.2) and (2.3) can hold trivially and
impose no extra restrictions on the heterogeneity.

5 Discussion of Assumption 2.2

The complications in Assumption 2.2, requiring the possible replacement of k by kM , are essentially
technical in character. The approximation of any chosen k by kM can be arbitrarily close, although note
that M must be Þxed and may not go to ∞ with n, and if part (ii) of the assumption does not hold, it is
not permissible to assume that substituting k for kM will yield the same limit.
However, it appears a plausible conjecture that Assumption 2.2(ii) holds generally, as a consequence of

Assumption 2.1; at any rate, we have not succeeded thus far in constructing a counter-example. The nec-
essary condition that s−2

n

Pn−m
t=1 XtXt+m

pr→ 0, for all but a Þnite number of m, is certainly an implication
of Assumption 2.1. What is harder to establish by direct means, although intuitively highly plausible, is
that the sum of these γn covariance terms, with arbitrary weights from the interval [−1, 1] as in (2.6), is
Op(1). Note that the absolute sum of these terms would generally diverge.
To take a related and familiar example, consider γn = n and anm = 1. After re-ordering, the double

sum reduces to

s−2
n

nX
t=1

t−1X
s=1

XsXt
d−→
Z 1

0

XdX (5.1)

where X is an a.s. continuous Gaussian process, which follows from the assumptions by de Jong and
Davidson (2000b), Theorem 4.l. A natural approach to establishing Assumption 2.2(ii) might therefore be
to show that (2.6) has a weak limit comparable to (5.1). However, the inclusion of the weights anm in the
sum requires a non-trivial extension of the existing results for stochastic integrals, so for the moment this
remains a conjecture.
The direct approach of bounding the second moment can also be applied, in those cases where the

calculations are feasible. One way, that may be regarded as adequately general for most applications, is
to make the shock process independent. The following result also calls for fourth moments, and while this
assumption is pretty standard in the literature, it is one that is avoided in De Jong and Davidson (2000a),
for example, and is not necessary for the FCLT.

Theorem 5.1 Let Assumptions 2.1 and 2.3 hold, and let Ut be independent and identically distributed
with finite fourth moment. Then Assumption 2.2(ii) holds.

Proof. Let σ2 = E(U2
t ) and µ4 = E(U

4
t ). Squaring (2.6) and taking expectations, note that sn = O(n

1/2)
under stationarity, and that the terms have expectation zero unless the random arguments are equal in
pairs. Therefore,

E

µ
s2
n

γnX
m=1

anm

n−mX
t=1

XtXt+m

¶2

= s−4
n E

µ ∞X
j=0

∞X
k=0

θjθk

γnX
m=1

anm

n−mX
t=1

Ut−jUt+m−k

¶2

= s−4
n (µ4 − σ4)n

∞X
j=0

∞X
k=0

θ2
jθ

2
ka

2
n,k−jI(1 ≤ k − j ≤ γn)
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+ s−4
n σ

4
∞X
j=0

∞X
k=0

∞X
j0=0

∞X
k0=0

θjθkθj0θk0

×
µ
an,k−jan,k0−j0(n− k + j)(n− j0 + k0)I(1 ≤ k − j ≤ γn)I(1 ≤ k0 − j0 ≤ γn)

+

γnX
m=1

(n−m)anman,m+j−j0−k+k0I(1 ≤ m+ j − j0 − k + k0 ≤ γn)

+

γnX
m=1

(n−m)anman,k0+k−j0−j−mI(1 ≤ k0 + k − j0 − j −m≤γn)
¶

= O
¡
max

1≤m≤γn

a2
nm

¢
(5.2)

noting that, for Þxed n, the quadruple sum in (5.2) is bounded by a multiple of (
P∞
j=0 θj)

4 <∞.
To generalize this argument to cases where the random sequence is dependent and nonstationary is

possible in principle, but requires showing the summability of sequences of fourth cross-moments of the
form E(UsUtUuUv). It would call for an extension of the current techniques for near-epoch dependent
processes, and additional specialized assumptions. On the other hand, if a weak convergence result could
be obtained, the example of (5.1) shows how the assumption of Þnite fourth moments could probably be
dispensed with. Note that the number of terms depending on µ4 in (5.2) is of lower order than those
depending on σ4, so that a normalization exists under which the limiting variance is positive yet does not
depend on µ4. As a familiar parallel, consider the fact that a χ

2(1) random variable possesses a variance,
notwithstanding that it has a representation as the limit of a random sequence of the form n−1(

Pn
t=1Xt)

2,
n ≥ 1, where E(X4

t ) =∞ is permitted. The variance exists in the limit, but not for any Þnite n, in this
case.

6 Proof of Theorem 2.1

Our approach involves breaking the sum of the Xt variables into blocks of γn terms. Let

Zni =

iγnX
t=(i−1)γn+1

Xt, i = 1, . . . , [n/γn] (6.1)

and

Zn,[n/γn]+1 =
nX

t=[n/γn]γn+1

Xt. (6.2)

The fundamental law of large numbers underlying the result is the following.

Lemma 6.1 If Zni is defined by (6.1) and (6.2), then under Assumptions 2.1 and 2.3,

[n/γn]+1X
i=1

(Z2
ni −EZ2

ni)
pr−→ 0.

This is a basic step in the proof of the CLT and FCLT, and hence is to be expected to hold under similar
conditions.
The second fundamental requirement, of showing that the truncation is compatible with the consistency

of the estimator since the additional terms are negligible, is established as follows.

Lemma 6.2 Under Assumptions 2.1 and 2.3,

nX
t=1

n−tX
m=0

|E(XtXt+m)| = O
µ
sup
r>0

nX
t=1

c2t−r

¶
(6.3)
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and
nX
t=1

n−tX
m=0

|E(XtXt+m)|I(m ≥ γn) = o
µ
sup
r>0

nX
t=1

c2t−r

¶
. (6.4)

Now, deÞne

An = Z
2
n1 +

[n/γn]+1X
i=2

(Z2
ni + 2Zn,i−1Zni). (6.5)

This can be shown to be a form of truncated kernel estimator of s2
n.
5 The steps are Þrst to show that it is

consistent, and then to show the difference between this estimator and members of the general truncated
class of Assumption 2.2, suitably normalized, are converging in probability to a limit arbitrarily close to
0. These requirements are met by the next three lemmas, from which Theorem 2.1 follows directly. Under
Assumptions 2.1, 2.3 and 2.2:

Lemma 6.3 s−2
n (An −E(An)) pr−→ 0.

Lemma 6.4 s−2
n E(An)− 1 −→ 0.

Lemma 6.5 s−2
n (�s

2
n −An) pr−→ 0.

The proofs of the Þve lemmas are given as follows.

Proof of Lemma 6.1

Without loss of generality, let n increase through a sequence of values such that rn = n/γn is always an
integer, so that the Þnal term in (6.2) can be ignored. For i = 1, ..., rn, substitute from Assumption 2.1(a)
into (6.1) and then re-order the sum, to obtain

Zni =

iγnX
t=(i−1)γn+1

∞X
j=0

θjUt−j

=

iγnX
t=(i−1)γn+1

ψ1ntUt +

(i−1)γnX
t=−∞

ψ2ntUt

= Z1ni + Z2ni (6.6)

(deÞning Z1ni and Z2ni) where

ψ1nt =

iγn−tX
j=0

θj (i− 1)γn + 1 ≤ t ≤ iγn (6.7)

ψ2nt =

iγn−tX
j=(i−1)γn+1−t

θj ∞ < t ≤ (i− 1)γn (6.8)

Observe that the arrays ψ1nt and ψ2nt do not depend on i except through t. Their patterns within each
block are the same, in the Þrst case comprising the sums of the Þrst m MA coefficients, for m = iγn− t, in
descending order from γn to 1, and in the second case the sums of γn consecutive MA coefficients starting
at the mth, for m = (i− 1)γn − t ≥ 1.
Next note that

kZ2nik2 ≤ sn sup
j<i

MnjKn (6.9)

5The best way to visualize the construction is by considering the square array of the n2 cross-product terms. An contains
the terms XtXt+m lying in a �saw-tooth� band about the main diagonal, such that −Kγn ≤ m ≤ Kγn for values of
K ∈ [1, 2].
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by Assumption 2.1(b), where

K2
n =

∞X
k=0

µ γn+kX
j=1+k

θj

¶2

= o(γn)

holds as a consequence of absolute summability, see Davidson (2002) Section 3. Now,
rnX
i=1

(Z2
ni −EZ2

ni) =
rnX
i=1

(Z2
1ni −EZ2

1ni) +
rnX
i=1

(Z2
2ni −EZ2

2ni)

+ 2
rnX
i=1

(Z1niZ2ni −EZ1niZ2ni). (6.10)

We show the convergence in probability of each of the three right-hand side terms. First, note that
ψ1nt = O(1) as n → ∞ by assumption, and therefore the random variables Xnt = s−1

n ψ1ntUt satisfy
Assumption 2 of De Jong (1997). It follows by Lemma 5 of the same source that

1

s2
n

rnX
i=1

(Z2
1ni −EZ2

1ni)
pr→ 0.

Next, applying the Jensen inequality, then Minkowski�s inequality and (6.9), note that°°°° rnX
i=1

(Z2
2ni −EZ2

2ni)

°°°°
1

≤ 2
°°°° rnX
i=1

Z2
2ni

°°°°
1

≤ 2s2
nK

2
n sup
h>0

rnX
i=1

M2
n,i−h = o(s

2
n)

by Assumption 2.1(d). Finally, in a similar manner but also using the Cauchy-Schwarz inequality,°°°° rnX
i=1

(Z1niZ2ni −EZ1niZ2ni)

°°°°
1

≤ 2
rnX
i=1

kZ1nik2 kZ2nik2

≤ 2s2
nKn sup

h>0

rnX
i=1

MniMn,i−h

≤ 2s2
nKn sup

h≥0

rnX
i=1

M2
n,i−h = o(s

2
n).

Proof of Lemma 6.2

We show (6.4), but then (6.3) will follow directly from the same arguments, by setting γn = 0 in the
formulae.
The triangle inequality gives

nX
t=1

n−tX
m=0

|EXtXt+m|I(m ≥ γn) ≤
∞X
j=0

∞X
k=0

|θj ||θk|
nX
t=1

n−tX
m=0

|EUt−jUt+m−k|I(m ≥ γn) (6.11)

Letting r = j−k and v =m+r, consider without loss of generality the terms |EUtUt+v|. Under Assumption
2.1, Ut is a mixingale sequence of size −1

2 with respect to constants ct, by Davidson (1994) Theorem 17.6.
DeÞne ξtp = E(Ut|Ft−p) and ζtp = Ut − ξtp, and note that

Eξ2
tp −Eξ2

t,p+1 = Eζ
2
t,p+1 −Eζ2

tp (6.12)

and that ξtp = Op(ctp
−1/2−δ) and ζt,−p = Op(ctp−1/2−δ) as p→∞ for δ > 0, by the mixingale property.

According to Lemma 3 of De Jong (1997),

|EUtUt+v| ≤
∞X

p=−∞

¡
Eξ2

tp −Eξ2
t,p+1

¢1/2 ¡
Eξ2

t+v,p+v −Eξ2
t+v,p+v+1

¢1/2
. (6.13)
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Rearrangement of the sums therefore yields

nX
t=1

n−t+rX
v=r

|EUtUt+v|I(v > γn)

≤
∞X

p=−∞

nX
t=1

¡
Eξ2

tp −Eξ2
t,p+1

¢1/2
n−t+rX
v=r

¡
Eξ2

t+v,p+v −Eξ2
t+v,p+v+1

¢1/2
I(v > γn)

= T1 + T2 + T3 + T4

where

T1 =
∞X
p=0

n+min{0,r}X
t=1

¡
Eξ2

tp −Eξ2
t,p+1

¢1/2
n−t+rX

v=max{0,r}

¡
Eξ2

t+v,p+v −Eξ2
t+v,p+v+1

¢1/2
I(v > γn)

T2 =
∞X
p=0

n+rX
t=1+r

¡
Eξ2

tp −Eξ2
t,p+1

¢1/2
−rX

v=max{1,1−t}

¡
Eξ2

t+v,p+v −Eξ2
t+v,p+v+1

¢1/2
I(v > γn)

T3 =
∞X
p=1

n+rX
t=1+max{0,r}

¡
Eζ2

t,1−p −Eζ2
t,−p

¢1/2

×
t−1X

v=max{0,r}

³
Eζ2

t−v,1−(p+v) −Eζ2
t−v,−(p+v)

´1/2

I(v > γn)

T4 =
∞X
p=1

nX
t=1

¡
Eζ2

t,1−p −Eζ2
t,−p

¢1/2

×
−rX

v=max{1,t−n−r}

³
Eζ2

t+v,1−(p+v) −Eζ2
t+v,−(p+v)

´1/2

I(v > γn).

In these formulae, note how the roles of leads and lags have been interchanged in the pairs T1, T2, and
T3, T4, to ensure that p + v is always nonnegative and increasing in p and v. Applying the convention
that empty sums equal zero, note that T2 and T4 vanish unless r < 0, and T1 and T3 vanish unless
r > −n. Using the argument of de Jong (1997) Lemma 4, it can be shown that each of these terms is
O(γ−2δ

n supr>0

Pn
t=1 c

2
t−r). Combining these results with (6.11) and Assumption 2.1(d) gives

nX
t=1

t−1X
m=0

|EXtXt−m|I(m ≥ γn) ≤ C1

µ
sup
r>0

nX
t=1

c2t−r

¶

×
∞X
j=0

∞X
k=0

θjθk(I(γn − j + k > 0)(γn − j + k)−2δ + I(γn − j + k ≤ 0)) (6.14)

for C1 > 0. Since |θj | = o(j−1) by Assumption 2.1(a), standard summability arguments (see for example
Davidson and de Jong (2000, Lemma A.1)) yield the result that

∞X
j=0

∞X
k=0

θjθk(I(γn − j + k > 0)(γn − j + k)−2δ + I(γn − j + k ≤ 0))

=
∞X
k=0

θk

µγn+kX
j=0

θj(γn − j + k)−2δ +
∞X

j=γn+k+1

θj

¶
= o(1). (6.15)

This completes the proof of (6.4).
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Proof of Lemma 6.3

We can write

An = Z
2
n1 +

[n/γn]+1X
i=2

(Z∗2
ni − Z2

n,i−1)

=
r1nX
i=1

Z∗2
n,2i +

r2nX
i=1

Z∗2
n,2i+1 −

[n/γn]X
i=1

Z2
ni

= A1n +A2n −A3n (6.16)

where

Z∗ni = Zni + Zn,i−1 =

iγnX
t=(i−2)γn+1

Xt, i = 2, ..., [n/γn] (6.17)

Z∗n,[n/γn]+1 =
nX

t=([n/γn]−1)γn+1

Xt (6.18)

r1n =


[n/(2γn)] + 1, if [n/γn] is odd

[n/(2γn)], if [n/γn] is even
(6.19)

and r2n = [n/(2γn)]. Writing the identity

An −E(An) = (A1n − E(A1n)) + (A2n −E(A2n))− (A3n −E(A3n)) (6.20)

it is clear that the convergence in probability to zero of the (Ain − E(Ain))/s2
n, for i =1, 2, and 3, each

follows by Lemma 6.1, noting that the order-of-magnitude assumptions on γn also hold for 2γn.

Proof of Lemma 6.4

s−2
n |s2

n −E(An)| = 2s−2
n

¯̄̄̄[n/γn]+1X
i=2

i−[n/γn]−1X
j=2

E(ZniZn,i−j)
¯̄̄̄

≤ s−2
n

nX
t=1

n−tX
m=0

|E(XtXt+m)|I(m ≥ γn) (6.21)

and convergence to zero of the majorant term in equation (6.21) follows by Lemma 6.2.

Proof of Lemma 6.5

For a Þxed integer M > 0, and a kernel k ∈ T that is also continuous everywhere on [0, 1), let �s2
nM denote

the kernel estimator employing the left-continuous kernel kM deÞned in (2.5). Write

An − �s2
n

s2
n

=
An − �s2

nM

s2
n

+
�s2
nM − �s2

n

s2
n

(6.22)

where the second term vanishes under Assumption 2.2(i). Otherwise, note that

�s2
nM − �s2

n

s2
n

=
2

s2
n

γnX
m=1

anm

n−mX
t=1

XtXt+m (6.23)

and
max

1≤m≤γn

|anm|→ sup
x∈[0,1)

|kM (x)− k(x)| (6.24)
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as n→∞. Under Assumption 2.2(ii) and the assumed continuity of k(·), (6.23) therefore be can be made
as small in probability as desired, by choosing M large enough.
To show that the Þrst right-hand side term converges in probability to 0, Þrst re-order the summation.

Write

An =
∞X
m=0

Wnm (6.25)

where

Wn0 =
nX
t=1

X2
t (6.26)

Wnm = 2
nX

t=1+m

XtXt−m (6.27)

for m = 1, ..., γn,

Wnm = 2

[n/γn]X
i=2

µ iγnX
t=(i−2)γn+m

XtXt−m

¶
+ 2

nX
t=([n/γn]−1)γn+m

XtXt−m (6.28)

for m = γn + 1, ..., 2γn, where the Þnal sum is taken to equal 0 if the lower limit exceeds the upper, and
Wnm = 0 for m > 2γn. Then, note that

An − �s2
nM

s2
n

=
M−1X
j=1

(1− k(j/M))Pnj + 1

s2
n

2γnX
m=γn

Wnm (6.29)

where

Pnj =
1

s2
n

[(j+1)γn/M]−1X
m=[jγn/M ]

Wnm. (6.30)

Note that

plim
n→∞

1

s2
n

2γnX
m=0

(Wnm −EWnm) = 0 (6.31)

by Lemma 6.3, and also that

lim
K→∞

lim sup
n→∞

1

s2
n

∞X
m=K+1

|EWnm| = 0 (6.32)

in view of Lemma 6.2 and the fact that supr>0

Pn
t=1 c

2
t−r = O

¡
s2
n

¢
by (2.3). Therefore,

M−1X
j=N

Pnj +
1

s2
n

2γnX
m=γn

Wnm
pr−→ 0 (6.33)

for each 1 ≤ N < M andM > 0. Considering (6.33) for the cases N = 1 and N = 2, it follows by Slutsky�s
Theorem that Pn1

pr−→ 0, and hence (1− k(1/M))Pn1
pr−→ 0. Arguing similarly for N = 2, ...,M − 1 shows

that each of the M right-hand side terms in (6.29) converges in probability to 0, and hence their sum so
converges.
The result is extended to kernels with a Þnite number of left discontinuities by adding these points to

the set of jumps deÞning kM , so the proof is complete.

Appendix: The Assumptions of De Jong and Davidson (2000a)
The assumptions cited in Theorem 3.1 are as follows. Assumption 1 cited in condition (a) imposes condi-
tions on the kernel function, requiring that k(.) ∈ K where

K = {k(.) : R → [−1, 1] | k(0) = 1, k(x) = k(−x) ∀x ∈ R,
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Z ∞

−∞
|k(x)|dx <∞,

Z ∞

−∞
|ψ(ξ)|dξ <∞,

k(.) is continuous at 0 and at all but a Þnite number of points} ,
where

ψ(ξ) = (2π)−1

Z ∞

−∞
k(x)eiξxdx.

To allow stochastic bandwidths, these must be strengthened by the further conditionsZ ∞

−∞
sup

α∈[ε,1/ε]

|k(αx)|dx <∞.

and Z ∞

−∞
sup

α∈[ε,1/ε]

|ψ(αξ)|dξ <∞.

which are respectively equations (2.11) and (2.12) of the paper. Note that this full set of conditions is
fulÞlled by the Bartlett, Parzen, Quadratic Spectral and Tukey-Hanning kernels.
Assumption 4 cited in condition (d) represents alternative smoothness conditions on the stochastic

process as a function of unknown parameters. It has the following three parts:

(a) n1/2κn(�θn − θ0) = Op(1), where κn = diag(κ1n, ...,κrn) is a deterministic r × r matrix;
(b) n−1/2κ−1

n

Pn
t=1E∂Xnt(θ)/∂θ is continuous at θ0 uniformly in n;

(c) there exists N ⊂ Θ, an open neighbourhood of θ0, such that,

lim sup
n→∞

nX
t=1

E sup
θ∈N

¯̄̄̄
κ−1
n

∂Xnt(θ)

∂θ0

¯̄̄̄2
<∞,

and either (i)

sup
θ∈N

°°°°°n−1/2κ−1
n

nX
t=1

eiξt/γn

µ
∂Xnt(θ)

∂θ0
−E ∂Xnt(θ)

∂θ0

¶°°°°°
2

→ 0

for all ξ ∈ R, or (ii), n−1/2γn = o(1) and

sup
θ∈N

¯̄̄̄
¯
nX
t=1

κ−1
n

∂X0
nt(θ)

∂θ

∂Xnt(θ)

∂θ0
κ−1
n

¯̄̄̄
¯ = Op(1).

See the paper for a full discussion of these conditions, which are rather mild. In the case of linear
functions they reduce merely to standard consistency conditions, and are certainly fulÞlled under the
present Assumption 2.1 applied to the constituent processes. In addition, they allow deterministic and/or
stochastic trends, and different rates of convergence of the parameters when κn 6= I.
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