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Abstract

This paper considers methods of deriving sufficient conditions for the central limit theorem
and functional central limit thorem to hold in a broad class of time series processes, including
nonlinear processes and semiparametric linear processes. The common thread linking these
results is the concept of near-epoch dependence on a mixing process, since powerful limit
results are available under this limited-dependence property. The particular case of near-epoch
dependence on an independent process provides a convenient framework for dealing with a
range of nonlinear cases, including the bilinear, GARCH, and threshold autoregressive models.
It is shown in particular that even SETAR processes with a unit root regime have short
memory, under the right conditions. A simulation approach is also demonstrated, applicable
to cases that are analytically intractable. A new FCLT is given for semiparametric linear
processes, where the forcing processes are of the NED-on-mixing type, under conditions that
are evidently close to necessary.
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1 Introduction

For statistical inference in time series, it is usually necessary to rely on asymptotic convergence
results such as the central limit theorem (CLT) and functional central limit theorem (FCLT).
The latter result, in particular, is central to the recent research on integrated processes and
cointegration models. To cite one seminal example from a large and growing literature, Phillips
(1987) derives distributional results for unit-root autoregressive processes. His results rely on
a FCLT due to Herrndorf (1984) which assumes a mixing condition on the increments of the
process.
As a benchmark, the basic result of this type is as follows. Let the stochastic process X,, :
[0,1] — R be defined by
[n€]
Xn(€) = 0,7 (11— Exy) 0<¢<1 (1.1)
t=1

where 02 = Var(Y.}; #¢), and [a] denotes the largest integer not exceeding a. Introduce the

following assumptions.
1. @y is either a-mixing of size —r/(r —2) for 7 > 2 or ¢-mixing of size —r/(2r —2), for r > 2.1

2. sup, E|z; — Exy|" < 0o, and if 7 = 2 then {(z; — Fx;)?} is uniformly integrable.

0.2
3. % - 62 >0, as n — oo.
n

Let % denote convergence in distribution, and let B denote standard Brownian motion on [0, 1].

Theorem 1.1 If Assumptions 1, 2 and 3 hold, then X, 4 B.

This is a special case of De Jong and Davidson’s (2000) Theorem 3.1, but the strong-mixing
(c-mixing) case is essentially the same as the one cited by Phillips (1987). Considering the case
& =1 yields a CLT, and for this result, Assumption 3 can be relaxed to permit forms of global
heteroscedasticity; see De Jong (1997) and Davidson (1992, 1993) for details.> Henceforth we
will refer only to the FCLT to avoid repetition. There is effectively no loss of generality, since
while the corresponding CLT may permit more heterogeneity, the short-memory requirements
are always common to both results.

In applications of Theorem 1.1, to determine the limiting distribution of the Dickey-Fuller
(1979) or Phillips-Perron (1988) statistics, for example, note that the increments of the observed
time series must satisfy Assumptions 1-3. Corrections for autocorrelation may be needed to
estimate the variance consistently, as in the Phillips-Perron nonparametric correction, and this
is also, in effect, the role of the lagged increments in the augmented Dickey-Fuller regression.
However, these corrections are irrelevant to the weak convergence of the partial sum process. To
apply results such as Theorem 1.1, the prime consideration must be whether the economic time
series having increments x; does possess the properties specified for it.

While the flexibility and model-independence of mixing conditions are attractive features,
there are well-known practical limitations with this approach to limiting the memory of a process.
Since the strong and uniform mixing conditions bind on the supremum over all possible random

! Among other references on mixing conditions see Davidson (1994), Chapter 14, for definitions and examples.

2Without Assumption 3 it may still be possible to show convergence to a Gaussian a.s. continuous limit process,
but this process is not Brownian motion.



events involving sequence coordinates having a given time separation, the relevant distributions
must be fully specified to establish that they hold. They are therefore difficult or impossible to
verify in practical applications. Moreover, they are known to fail in some seemingly innocent
cases. Stable first-order linear autoregressive models with Bernoulli-distributed i.i.d. shocks are
not strong mixing (Andrews 1984). Known sufficient conditions for strong mixing specify not
merely a continuous distribution, but a smoothness condition on the density (see Davidson 1994,
Theorem 14.9). Establishing that uniform mixing holds for linear models is even harder, and the
best known sufficient condition (e.g. Davidson 1994, Theorem 14.14) requires the shock process
to be bounded with probability 1, ruling out normality for example.

This paper considers alternatives to Assumption 1 that are either weaker than mixing, or
more easily verifiable in applications, or both. The main vehicle for the analysis is the concept
of near-epoch dependence (NED) on a mixing process, first introduced to econometricians by
Gallant and White (1988). This approach to specifying conditions for the FCLT was pioneered
by McLeish (1975), although the concept originates with Billingsley (1968) and Ibragimov (1962).
It is a nonparametric restriction on the memory of a process that nonetheless constrains only a
sequence of low-order moments. It has the benefits of both holding in cases where mixing fails,
and, as we show below, of being potentially verifiable, as the property of a range of popular
nonlinear time series models.

Let ¢ (...,V¢—1, Vi, Vit1, ...) denote a random sequence whose coordinates are measurable func-
tions of another random process {Vs, —00 < s < oo}, which is in general vector-valued. Define
Flt = 0(Vs,...,v) for any s < ¢, and also let E}"™(.) denote the expectation conditional on

S

FI™ . For future reference, note that we shall also use the standard notation F; to denote F* .

The following definition is adapted from Davidson (1994), Definition 17.1. We reproduce it here
for convenience, since features will need to be specifically cited in what follows.

Definition 1 z, is said to be near-epoch dependent on {v,} in L,-norm (or L,-NED) for p > 0
if3
HI‘t — Efjmfﬁth < dtl/(m) (12)

m

where d; is a sequence of positive constants, and v(m) — 0 as m — oo. It is said to be L,-NED
of size —p if v(m) = O(m=#=¢) for £ > 0.

In the case where v(m) = O(e=®™) for 6§ > 0, such that the size is nominally equal to —oo, we also
say the process is geometrically L,-NED. The scale constants d; allow for possible nonstationarity
and in many cases, including all those examined in this paper, can be set equal to 1. More
generally, it is desirable in applications to require that d; = O(||z¢|,,), since otherwise the concept
can become vacuous. Note that NED is a condition on the mapping from {V,, —oco < s < oo} to
x¢, and so says nothing about the amount of dependence in the xz; series itself. It becomes useful
when combined with a mixing condition on Vv, and in particular, independence of this series.

The NED-on-mixing property, subject to suitable size and moment restrictions, proves suffi-
cient for the FCLT to hold. Consider the following assumption.

1. @y is Lo-NED of size —% on a process {V,} with respect to constants d; < ||z¢|,., where v
is either a-mixing of size —r/(r — 2) for r > 2 or ¢-mixing of size —r/(2r — 2), for r > 2.

The following result is another case of De Jong and Davidson’s (2000b) Theorem 3.1.

Theorem 1.2 If Assumptions 1/, 2 and 3 hold, then X, 4 B

3H|\p denotes the Ly-norm, (E|.|?)"/?.



The noteworthy feature of this result is that the mixing and moment conditions are identical
to Theorem 1.1. The extension to NED functions of mixing processes represents a kind of free
lunch, with no penalties on the permitted mixing sizes or other conditions. The CLT obtained by
considering the case £ = 1 is similarly the most general currently available in respect of memory
properties, although for this case Assumption 3 can be relaxed, as before.

The linear process is a standard example. Consider the general MA(co) model

Tt = Zﬁkut,k (1.3)
k=0

where u; (to be thought of as an element of vy, or possibly coincident with it) is bounded in Lp-
norm with mean 0, but otherwise is unspecified. If the MA coefficients are absolutely summable,
the process is L-NED on {u;} with respect to NED numbers

j=m+1

and constants
dy = 2sup ||us|,
s<t

(see Davidson 1994, Example 17.3.). Thus, if |0;| = O(j717#7¢) for ¢ > 0 the NED size is —u. To
satisfy the Lo-NED conditions of Theorem 1.2 we would need |6;] = O(j73/27¢). However, since
the shocks are themselves permitted to be dependent, note that this result is not comparable
with the standard linear process setup, with i.i.d. shocks.

So much is well known. The present paper extends the theory in two directions, distinct
but having in common the application of the NED concept. First, in Section 2, the property of
L>-NED on an independent process is used to unify the treatment of a range of popular nonlinear
time series models. Parametric conditions are derived for these models to satisfy the assumptions
of Theorem 1.2. The familiar case of ARMA processes is treated first, in Section 2.1, to establish
methods and notation. We then consider in turn, bilinear models (Section 2.2), GARCH models
(Section 2.3), and threshold autoregressive models (Section 2.4), looking in particular at the mixed
stable/unit root case (Section 2.5). Section 2.6 considers an analogous, analytically intractable
case, the ESTAR model, in which simulation is used as an alternative means of checking the
conditions. Section 2.7 then offers some generalizations of the approach for smooth nonlinear
autoregressive forms.

Second, in Section 3, it is shown that under linear process assumptions, the previously estab-
lished sufficient conditions for the FCLT can be weakened quite dramatically, well beyond what
the discussion of the case (1.3) above might suggest. In particular the result would apply, under
mild summability assumptions, to a linear process driven by any of the sequences discussed in
Section 2. This result is of particular interest, because it appears to get close to defining necessary
memory conditions for the FCLT.

Section 4 concludes the paper, and the main proofs are gathered in the Appendix.

2 Applications of the NED Approach

The NED property offers an approach to proving the FCLT for a range of time series models,
since there is hope that the L, norm in (1.2), for the case p = 2, can be evaluated and bounded in
specific cases. In many cases of practical interest, u; is specified as an independent shock process,
and then Theorem 1.2 offers more generality than necessary. The NED numbers fully determine



the restrictions on the memory of the observed process. In the examples that follow we always
assume independent shocks, although this is principally for tractability of the derivations.

As in most dynamic econometric models, the observed process x; is made to depend only on
current and lagged values of u;, and hence is F;-measurable. In particular, the operator Effﬂ
is the same as E!_, . Another feature of the results that follow is that, because it specifically
bounds a second moment, Assumption 1’ yields Assumption 2 as a by-product. We do not find
the former without the latter. This generalizes the familiar fact in linear processes, that a memory
limitation is implicit in the property of wide-sense stationarity. These two properties are often
confused, and we should emphasize that the coincidence need not obtain in more general classes
of model than the ones considered here.

2.1 ARMA Models

This case is well known but we describe it for completeness, and because the techniques illuminate
the treatment of the nonlinear cases. Let the ARMA(p, ¢) model be

p q
Ty = Z )\jxt,j + up + Zﬂjut,j. (21)

where u; ~ 4id(0,02). Set ¢ = p, for simplicity, and without loss of generality since the excess
terms can be set to zero as required, and write the model in companion form. Letting X; =
(@4, Tp—1, .o, Tp—p+1)" and Uy = (ug, Ug—1, ..., Wg—p+1)’, define p x p matrices

Mo A1 A 01 - 0,1 0,
1 -0 0 ~1 -~ 0 0
A= . T, e=|. . (2.2)

so that

Xt = AXi—1 + U + OUy_
m—2
=A™ m U+ Y A (A+O)U 1+ A" OU (2.3)
j=0
for any m > 2. The process is covariance stationary subject to the usual stability condition that
max; |p;] < 1, where the p; are the eigenvalues of A. Under the assumptions, we have

X¢ — Eftg;bxt = Am_p(Xt,m+p — Eftg}xt,m+p). (24)

The object of interest is the Lo-norm of the first element of (2.4). Let |||, with a vector argument
represent the vector of the Ly-norms of the elements, and similarly let |- | represent the vector of
absolute values. Then, letting

c =(1,0,...,0) (px1) (2.5)
note that
o — Bl = [ A ey — B )
< 21" AP [[Xe—mapll2
= O(max | ;™) (2.6)
7

where the inequality is obtained from the Minkowski and Jensen inequalities and the assumption
of stationarity. The conclusion is summarised as follows.



Proposition 2.1 The covariance stationary ARMA(p, q) process is geometrically L,-NED on
the shock process with respect to constants d; = 1.

A point to note is that the stated condition suffices to satisfy Assumptions 1’ and 2. To ensure
condition 3 holds requires the additional stipulation of invertibility, excluding unit roots in the
moving average component.

A feature of the NED approach is the ease of generalization to allow for heterogeneous
marginal distributions. The above argument is straightforwardly modified for the case where
ug ~ ihd(0,0?), denoting that the random variables are independent but heterogeneously dis-
tributed, with time dependent variances in particular. If for example 07 = O(t®) for o > 0, it
is easily verified that the foregoing proposition holds with d; = Ct®/2, for some C' > 0. While
these conditions can be shown to be compatible with a central limit theorem, they do not lead
to a FCLT with regular Brownian motion as the limit process.

For the sake of simplicity, the analysis following focuses on stationary processes by assuming
the driving processes to be i.i.d. Following the current literature, the models to be considered
are mainly varieties of nonlinear finite-order differerence equation. Since their solution involves
iterated products of random variables, it is not surprising to find that they mostly share the
geometric Lp-NED property with the linear ARMA form, subject to conditions sufficient for
them to possess bounded Lo norms. These are constant under stationarity of the driving process,
but in each case that follows, note how the assumption can be relaxed to the i.h.d. case, leading,
given the existence of the requisite marginal moments, to modified results allowing d; to be a
function of time.

2.2 Bilinear Models

The books of Priestley (1988) and Tong (1990) are leading references on bilinear models. For
a recent econometric application see Davidson and Peel (1998). Chapter 4.1 of Priestley (1988)
analyses the so-called BL(p, 0, p, 1) model, which is the case with m = p of

p m
T = z )\jmt,j + Zﬁjwt,ﬂufl + ug. (2.7)
Jj=1 Jj=1

This in turn represents a sub-class of the class of BL(p,r,m, k) models defined by Subba Rao
(1981), which involve terms in x¢_ju;—; for j =1,...,mandi=2,...,k,and us—j for j =0,...,7.
The setting of m = p and r = 0 sacrifices effectively no generality, since the MA coefficients are
not involved in the NED analysis, similarly to the ARMA case.

Following Priestley, let A be defined as in (2.2) and let

B1 o Bpo1 By
B=|. . . : (p x p) (2.8)

and C be defined by (2.5). Defining X; (p x 1) as before, the companion form of the model is
X = AX¢_1 + BXi_qus_1 + Cuy. (29)
Define the p x p matrices

Y = E(xX) E=Euxx) ®=FEu?xx{)



and let E(uf) = py. While not necessarily assuming Gaussianity, let Euf = 0. This simplifies
the expressions following, specifically the form of the matrix P, but does not affect the nature
of the solution and the conditions for its existence. Then, straightforward though still tedious
manipulation shows that & = K 4+ K’ where

K =d*(1 — A)!Bcc’ (2.10)
and
VecX = (1 —A®A —0?°B @ B) }(VecP + (1g — 0*)B ® B Veccc!) (2.11)
Vec® = (1 —A®A —0’B @B) (02 VecP+(14 — 0*)(1 — A ® A) Veccc) (2.12)
where
P = AEB’' + BEA' + occ/ (2.13)

subject to the stability condition represented by max; |u;| < 1, where u,; are the eigenvalues of
ARA+0°BoB.
Letting W.(j) = [[]=1(A + Bus—;) (p x p) and Wy = (A 4+ Buyg)X; (p % 1), note that

Xt — By = Wy (m)(We—m—1 — EXT™ Wy 1) (2.14)
where
E(ww,) = ASA' + AEB' + BEA' + B®B' < (2.15)

and by the independence of the terms,
Vec E[®,(j)cc’®,(5)] = (A® A + 0?B @ B)’ Veccc'. (2.16)
Since ¥¢(m) and W;_,,_1 are also independent,

e — B maellz = 116" (m) (We—m—1 — B2 We—m—1) 2
< 2tr[E(®(m)cc’ ¥, (m) ) E(Wi—m_1W, ., 1)]*?
= O(max |p1;[™/?) (2.17)

according to (2.16), using the Jensen inequality similarly to (2.6). The conclusion may be stated
as

Proposition 2.2 The covariance stationary BL(p,0,p, 1) process is geometrically L,-NED on
the shock process with respect to constants d; = 1.

Extending this result to BL(p, r,m, 1) is trivial, for reasons already remarked. Moving to the
general BL(p, r, m, k) is not trivial, however, both because of the complexity of the relevant mo-
ment expressions, and because these involve moments of the u; of higher order, depending on k.
Thus, consider the expression corresponding to (2.16) when W(j) = [T/—; (A+ S Bitg—i ).
However, subject to the existence of the required moments, parameter restrictions for the geo-
metric L,-NED property could in principle be derived by elaboration of the above arguments.



2.3 GARCH Models

On GARCH models of persistent volatility see, for example, Bollerslev (1986), and Engle (1995).
In this model
w = h'%e, (2.18)

where ¢ ~ iid(0,1) and h; is an F;_j-measurable process. Hansen (1991) has derived conditions
for NED in the GARCH(1,1) case. In the GARCH(p, p) model that we consider here, without
loss of generality,

p p
ht = oo + Z aiutz_i + Z Bihi—i
—ao—I—ZaZ €2 . — 1)+ 6i]hi (2.19)

where 6; = a; + ;. The following lemma holds for any case of (2.18) in which A is bounded
below by a constant ag > 0. (All proofs are given in the Appendix.)

1/2‘

Lemma 2.1 |lu; — B[, < ag 77 ||he — B R, -

It therefore suffices to show that h; is L,-NED on {&;}, and as with the ARMA and BL models
the key step is to express the process as the sum of a ]:ttffn”—measurable term and a remainder.
The companion form of the model is

h; = cap + (A+AS,_1)h;_1
oo J
=cag+ao Y _ [[(ASi«+A) (2.20)
j=1k=1

where hy = (ht, ..., hi—p+1) and Sy = diag{e? — 1,...,e2 _p+1 — 1}. Here, C is as in (2.5) and
A and A have the same structure as A in (2.2) and B in (2.8) respectively, with the ¢; and «,
respectively, in their top rows. Note the condition for covariance stationarity, that A has all its
eigenvalues within the unit circle such that

E(h) = ap(1 —-A) 1c. (2.21)

Let Y¢(m) = ag H;"Z?H(Ast_k + A). Noting that AS; + A is F;*™-measurable for s =
t—1,....,t—m+p,

ht — Efjnrzht = Tt(m)(ht_m+p_1 - Eijht_m+p—1). (222)

Suppose that h; is bounded in Lp-norm, or equivalently, that the process z; has bounded fourth
moments. Then

[he — EfX T hall2 = [|C" Ce(m) (N—map—1 — BN —map—1) |2
p
I{Ce(m) Y15 (Bt —mrp—j — Ef he—map—j) |12
j=1
p

Z {7 e(m) baj 2l he—mep—j 2 (2.23)



where the first inequality is Minkowski’s. The second uses the fact, easily verified, that ht—p+p—;
is independent of {X(m — p + 1)}1; by assumption, and then Jensen’s inequality, as before.
To obtain the conditions for ||A||2 < oo, not depending on ¢, let

%= E(htht,)

[

= E(h;h{S;)

and note that
E(Sththést) = Ug dg )

where p, = Eeé1 — 1, the variance of stz — 1, and dg X represents the p x p diagonal matrix
having the same diagonal as ¥. Using the first equality in (2.20) to substitute for h; and taking
expectations yields

Y = AXA' + 1, Adg A + AEA + AT A’ + 03F
E=AEJ) + p,Adgxd’ (2.24)
where )
J= [ (I)p_l 8 ] (p x p).
and

F=cc'+A(l —A)tec’ +cc/(1 —A)TA

Define the p? x p? permutation matrix P, such that Vec(Z') = P Vec E, and the p? x p? deletion
matrix D, such that Vec(dg ) = D Vec 3. Then the stable solution of (2.24) for ¥ is given by

VecE =ad (I — M)t VecF
where
M=ARA+ 1 (AxAD + (A2 A)+(AAP)I —J @A) @ A)D.  (2.25)

Accordingly, the condition for existence of the fourth order moments of the GARCH(p, p)
(and more generally the GARCH(p, q) by setting the excess terms to 0 in formulae) is that the
eigenvalues of both A and M all lie strictly inside the unit circle. Subject to this condition it
is clear, in view of the geometric rates of convergence of the sequences of cross moments, easily
deduced from (2.20), that the process is fourth-order stationary in the sense of, e.g., Hannan
(1970, page 209). Since the eigenvalue condition is necessary as well as sufficient, we may refer to
it as the fourth-order stationarity condition. Note that to obtain this condition, we have invoked
parameter restrictions plus the finiteness of the fourth moment of the i.i.d. driving process &g,
but not Gaussianity of the latter process.

Moreover, it is clear from consideration of the second equality of (2.20) that E(X(m)X¢(m)’)
is the mth term in the expansion of ¥ in geometric series, and hence that |[{X:(m)}1]2 =
O(mazx;|p;|™?), where the p; are the eigenvalues of M in (2.25). The conclusions of this section
are therefore summarised as follows.

Proposition 2.3 A fourth-order stationary GARCH(p, ¢q) process is geometrically L,-NED on
the underlying i.i.d. process, with respect to constants d; = 1.

A further point to notice here is that the argument can be adapted to prove that x; is geometrically
L1-NED, subject only to the covariance stationarity condition. This is sufficient to show that, for

example, the sample mean of the process converges in probability. However, it does not suffice
for the FCLT.



The pure GARCH process is of course a fourth-order stationary martingale difference on the
assumptions, and Assumption 1’ is therefore not directly required for the proof of the FCLT,
although it suffices. However, FCLTs for martingale differences call for a weak law of large num-
bers to hold in the squares of the process (Davidson 1994, Theorem 24.3). For this purpose, the
L1-NED property of the squares can be invoked (Davidson 1994, Theorem 17.9), and Proposition
2.3 establishes fourth-order stationarity as a sufficient condition.

The result may be also extended by, for example, letting the process drive an ARMA. Let x4
n (2.1) have the MA(o0) representation

Ty = ijutfj |Pj‘ = O(|MAV) (2.26)

where 14 is the absolutely largest eigenvalue of the companion form in (2.3). Also let u; = h% / Zes
where ¢; ~ 7id(0,1) and h; is generated by (2.19) and let ug denote the absolutely largest
eigenvalue of M in (2.25). Then, combining previous results with Minkowski’s inequality yields

e = B, = (€' = B

< |lc"(ue = B u) |2
m—p
+ > A (A+O)(ur—j-1 — Ef U a)|
j=0

+ }: Ic" AT (A+©)us—jal2

=m—p—1
—-p
= O( 3 bl 7 + 3 w)
Jj= j=m—p—-1
O+ 1) mae{ls 7 ™). (2.27)

Since the exponential term in the final member of (2.27) dominates, the conclusion is as
follows.

Proposition 2.4 A stable ARMA driven by a fourth-order stationary GARCH process is geo-
metrically L,-NED on the underlying i.i.d. process, with respect to constants d; = 1.

However, it may be noted that a more general result is obtained by combining the GARCH result
with Theorem 3.1 to be introduced below, since under the assumptions, the driving GARCH
process satisfies the conditions imposed on z; in (3.1).

2.4 Switching and Threshold Autoregressions

A wide class of nonlinear autoregressive models take the general form

p
Te= Y G atij U (2.28)

=1

where u; ~ iid(0, 0?) and ¢;i 1s a Fi-measurable random variable that in general depends on x4
for s < t. The bilinear models already considered are members of this class. However, note that

10



F: can be larger than the natural filtration o(xs, s < t). As a referee points out, it is one of the
strengths of the NED approach that such models can be easily treated.
An important set of cases is defined by

N
b= Nil} (2.29)
=1

where the \j; for ¢ = 1,..., N and j = 1,...,p are coefficients, and the I} are Fi-measurable
indicator functions of which one equals unity, and the rest zero. Models of this type include
the self-exciting threshold autoregression (SETAR) models, in which I} is the indicator of
itself falling in a particular interval (see e.g. Priestley 1988 Chapter 4.2, Tong 1990 Chapter 3.3,
Granger and Terdisvirta 1993 Chapter 4.1) and the Markov-switching autoregression (Hamilton
1994, Chapter 22.4) in which the I} constitute an independently generated Markov chain. A
third group are the smooth transition autoregressive (STAR) models, in which the indicator
functions are replaced by smooth functions of the data having the unit interval as range, such as
distribution functions or logistic forms.
The companion form for these models is

X¢ = Pp_1X4_1 + Cuy (2.30)
where € was defined in (2.5) and
¢1,t71 e ¢pfl,t71 ¢p,t71
1 e 0 0
Qtil = . . . .
0 o 0

The usual expansion yields, for m > p,

m—p j m—p+1
X = Z H Pt pCur—j + H D kXt—m+p-1 + Cut. (2.31)
7=1 k=1 k=1

Using the Minkowski, Jensen and Holder inequalities, we have for some 7 > 1,4

m—p+1 m—p+1
Hwt_EfjmthZZ c’ H Qt—kxt7m+pfl_cl H Qt—kEft;Z(thm+pfl)
k=1 k=1 2
m—p+1
<2(c" [ ®ws [ m— P (2.32)
k=1 2r/(r—1)

In the case r = 1, the first factor of the majorant of (2.32) is interpreted as the sup-norm of the
argument.
For the case of (2.29),

N
® =) LA
=1

4 As previously, the Lp-norm with vector argument is interpreted as the vector of Ly-norms.

11



where the A; are defined as in (2.3), and

m—p+1
¢ T[ vl =00k
k=1 o
where |u*| denotes the largest modulus of the eigenvalues of the set Aq,...,An. If |p*] <1

then the eigenvalues of ®; are stable with probability 1, and the TAR is accordingly covariance
stationary. Letting A* denote the member of the set to which p* corresponds, we have

J l
E(x?) = 0% + i i c'E H H b;_jcC'®;_Cup_jus_i

j=11=1 k=1i=1
o) 2
< 0?2 + o2 <Z C'A*]C> < 0.
=1

Chan and Tong (1985) and Tong (1990) develop the concept of geometric ergodicity as a re-
striction on the behaviour of nonlinear stochastic difference equations like the above. In stationary
processes, this restriction implies strong mixing at the geometric rate so that the conditions of
Theorem 1.1 are satisfied. It is therefore worth emphasising the advantages conveyed by the
NED approach in these cases, in addition to the relative ease of establishing the property already
demonstrated, and the powerful asymptotic results available. The extension to nonstationary
cases, featuring trending moments of the shock processes for example, has already been indi-
cated. However, another important gain in generality is that NED depends in no way on the
distribution of the shocks, beyond the existence of the requisite moments. By contrast, establish-
ing geometric ergodicity in a typical application of the above type requires the shock distribution
to be continuous.

2.5 Unit Root SETAR Models

A more interesting case is where maximum eigenvalues of unity are admissible with positive
probability, so that the process behaves under certain conditions as a unit root process. Where
stability with probability 1 is not available, the case r > 1 in (2.32) may be considered, requiring
the process to have finite Ly, norm. Then we must consider the behaviour of the m-fold product
in the majorant as m increases.

A simple first-order example of the self-exciting type will be analysed. Let

T tu, |1 <a
ATi_1 + ug, otherwise

for 0 < A <1 and a > 0, where u; ~ iid(O,UZ), and assume further that u; is continuous, the
p.d.f. having finite second derivative at 0, and E|us|*" < oo for » > 1. It could for example
be Gaussian. Models of this type can arise in the theory of exchange rate bands, and Ss-type
inventory models. The following result is proved in the Appendix.

Proposition 2.5 Under the stated assumptions, z; in (2.33) is geometrically L,-NED on u; with

v(m) =0 ((ata) + (1 gappzee=)" ) (2.34)
where, letting f denote the p.d.f. of wuy,
o) =) [ [ fa—ydudy (2.35)
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and g(a) < 1.

Figure 1 plots the function g(a) for the case where f is the standard Gaussian. Application of
9@

0.87
0.67
047

0.271

Figure 1: The standard Gaussian case.

(2.34) shows how the memory of the process is bounded depending on the width of the band,
measured in units of the standard deviation of the shock process. A large value of r is evidently
necessary if the rate of decline of v(m) is not to be very slow even for relatively small values
of a, and hence formula (2.34) is most useful for cases where all moments exist. Otherwise, the
inequality in (2.32) could suffer a lack of sharpness, such that with r close to 1, the dependence
might in practice decline faster than the derived bound indicates.

2.6 The ESTAR Model

A close relative of the last example is the exponential smooth transition autoregression (ESTAR)
taking the form ,
xp = e PTiimy g 4y (2.36)

where 3 > 0 is a parameter and, as usual, u; ~ 4id(0,0?) and E|u|?" < oo for r > 1. This is
another way to implement the idea of a process which has random walk characteristics in the
mid-range, and mean reversion properties at extreme values, but in this case the transition is
smooth. The autoregressive coefficient ¢,_; = e*ﬂmg—l, corresponding to ®;_1 in (2.30) with
p =1, is equal to 1 only with probability 0.

Analytic solution of the difference equation is by no means straightforward in this type of
model, and no simple way to evaluate the factors of (2.32) suggests itself. However, it is easy
to compute the relevant moments by simulation. The results of this exercise, using standard
Gaussian disturbances and a sample size of 100,000, are reported in Table 1. In the case of

m+1
HHk:l ¢t7k HZT/(?"*].

series has been regressed on m.?. The R?s in these regressions are all greater than 0.97 and exceed
0.999 for the smaller values of 3, so the exponential approximation is good. The antilogarithms
of the slope coefficients appear as the left-hand factors in each cell of the table, raised to power
m, while the right-hand factors are the estimated Lo.-norms of the process. In contrast to the
threshold model, there is no serious penalty here in setting r close to unity. The difference is

y the norms have been estimated for m = 1, ..., 100 and the logarithm of this

®The norm may be too small for the logarithm to be computed for the larger values of m, and in such cases the
number of lags is truncated.
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| B=1 B=0.1 B =0.01 £ =0.001
r=1.110.565" x 1.08 0.904™ x 1.40 0.981™ x 2.30 0.995™ x 4.01
=50 | 0.499™ x 4.09 0.876™ x 4.81 0.963™ x 6.85 0.988™ x 10.87

Table 1: Numerical evaluation of bound (2.32) in the ESTAR Model. The factor 2 has been
omitted.

that in the former model ¢, = 1 with positive probability, so that taking a large power does not
shrink it, but that does not occur in this case.

2.7 Smooth Nonlinear Autoregressions

Finally, consider methods for tackling a general class of models which encompasses some of those
discussed above. These have the form

Tt — f(ut, xt_l) (237)

where f is differentiable at least with respect to its second argument. Assume, as previously, that
ug ~ 4id(0,02), with |Jut|,, = B < oo for 7 > 1. The approach here is to consider the recursive
solution

vy = f(ug, f(ue-1, f(ui—2,...)...))
= g(ut, ut—1, ut—2; ...) (2.38)
Denoting the latter function by g, also define gi* = g(uy, ..., ut—m, 0,0, ...). Then note that

o0
g —gi = Z Gijus—; (2.39)

j=m+1

by the mean value theorem, where using the chain rule of differentiation and (2.38), we can write

_ gt * . e
Gt—.] - (aUt_]> - kl;[lfz,tk'

Here the ‘«’ denotes that the derivative is evaluated at points uz‘fj € [0, us—;], and

Joi—k = fo(Up—k, G(Ut—p—1s ooy U, Uy 15 ---)) (2.40)
denotes the derivative of f with respect to its second argument, evaluated at the points u;_, .,

for k > 0. Now use the fact that E/*"(.) is the minimum mean-square F; " /"-measurable approx-
imation of its argument, and then the Hoélder inequality, to obtain, much as before,

gt — B maill, < llge — o7l

<B Z H fo,4—k

j=m+1||k=1

(2.41)

2r/(r—1)

This case was considered by Gallant and White (1988) (also see Davidson 1994 Chapter 17.1)
although subject to the stringent stability condition, |f2 ;x| < b < 1 with probability 1. In this
case it is obviously easy to bound (2.41), but the restriction is stronger than strictly necessary,
in the light of the earlier discussion. As an illustration of the calculations involved, one might
take the ESTAR example considered above, although our approach there is preferable since it
exploited the additivity of the error term. The cost of the extra generality is to introduce the
infinite series into the NED bound, but since in general the terms of the sum decline exponentially
(if they do decline) there is no extra penalty here. The sum from m to oo in (2.41) declines at
the same rate as the mth term.
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3 Linear Forms
Let

Zt = Zekxt,k (31)
k=0

and define for z; the standardised stochastic process Z, on [0, 1], having the form of (1.1). The
following theorem is proved in the Appendix.

Theorem 3.1 Z, % B if the process {xs, —0o0 < s < oo} in (3.1) satisfies Assumptions 1/, 2 and
3, and the sequence {0,} satisfies the following conditions: |6;| is regularly varying at infinity,°
>0
7=0

0< < 00 (3.2)

and

k=0 \j=1+k

In other words, this result says that any process satisfying the assumptions of Theorem 1.2 can be
replaced by a moving average of itself, under the specified conditions, and the weak convergence is
preserved. This is a corollary to Theorem 3.1 of Davidson and de Jong (2000), which establishes
the FCLT for fractionally integrated processes. It operates by the trick due to Davydov (1970),
of re-ordering the partial sums of Z, to collect terms with the same time index, so converting
a dependence problem effectively into one of heteroscedasticity. In the fully general version of
Theorem 1.2 given by De Jong and Davidson (2000b), the variances of the process are allowed
to trend like t* for any a > —1, and exploiting this fact yields the result. However, it cannot
be generalized beyond the linear case. There is no way yet known of further improving general
(model-independent) dependence conditions over those given in Theorem 1.2.

The novel condition here is (3.3). Considering the case n = 1 shows that it implies square-
summability of the coefficients. However, consideration of the following numerical lemma, proved
in the Appendix, shows that it is weaker than absolute summability.

Lemma 3.1 For € > 0,

Z (k7% = (n+k) )2 =o(n).

k=1
If the coefficients all take the same sign, the finiteness specified in (3.2) is equivalent to absolute
summability of the sequence, and condition (3.3) holds in consequence. If || = O(j~17¢) for
€ > 0, then
n+k n+k
D i< > 10l
j=1+k j=1+k
n+k
<o

SThat is, |0;| = j*L(j) for real p where L(xj)/L(j) — 1 as j — oo for all z > 0. L is called a slowly varying
function, and can be arbitrary for finite j. This assumption can certainly be relaxed, by specifying suitable regularly
varying bounding sequences. However, such an extension would complicate the statement of the result while adding
little useful generality; in particular, note that the finite-order MA case is covered directly by Theorem 1.2.
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<

o Q

(k= =(n+k)) (3.4)

for C > 0.7

If the coefficients may differ in sign, however, condition (3.3) becomes the binding condition.
Consider an example with alternating signs, 6; = (—1)7j —1/2=¢ ¢ > 0.8 This sequence is square-
summable but not absolutely summable. However, defining

0 =

{ $2(0;+0j41), 1+k<j<n+kandj—Fkodd
J

’;-,1, 1+4k<j<n+kandj—keven

note that if n is even,

n+k n+k
o= >0 (3.5)
j=1+k j=1+k

and it can be verified that e(j + 1)~3/27¢ < 05 < £j=3/2=¢ If n is odd, the same equality holds
with 07 so defined for j < n+ k and 0}, = 0p+r. Then, similarly to (3.4),

n+k

>0

j=1+k

<Ok — (4 k)Y 4 Co(n+ k)TVEE (3.6)

for C1 > 0 and C2 > 0, with Cy = 0 if n is even. Both terms on the majorant side of (3.6) satisfy
the condition that their sum of squares over k =1,2,... is o(n).

This example can be elaborated with more general patterns of sign change, such that the
partial signed sums grow appropriately. Consider

0; = Y272 cos(2mj /N)

for positive finite integer N. A construction on the lines of (3.5) is clearly possible, off-setting
pairs of positive and negative terms. A sinusoidal lag distribution involving changes of sign will
in general allow longer memory than a monotone one. These examples give an indication of the
generality of condition (3.3), noting that the ‘—%’s in the exponents of the first majorant term
of (3.6) are actually surplus to the requirements of square-summability. However, a counter-
example is provided by the case 6; = j~Y27%cos(2rj7/N) for v < 1. In this case the period
of the fluctuations is increasing with the lag, and the ‘off-setting’ device fails in the tail, as k
increases.
An example of (3.1) in which the assumptions of Theorem 3.1 are violated is the fractionally
integrated, or I(d), model. In this case,
I'(j+d) -1
9.7 - F(d)F(] 4 1) - O(] ) (37)
When d = 0, §; = 0 for j > 0 and the assumptions of Theorem 3.1 reduce to those of Theorem
1.2. The long memory case, in which 0 < d < %, violates the upper bound specified in condition
(3.2) because the lag coefficients are positive and non-summable. As the above-cited theorem
of Davidson and de Jong (2000) shows, the limit of the partial sums is not B in this case but

"For simplicity, we ignore the possible role of slowly varying components here. A version of the argument can
also be derived for the summable case |6;] = O *(logj)~*~%), § > 0.

8There is no suggestion that this is a realistic model of any observed process. It is taken simply as a tractable
case, for purposes of illustration.
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fractional Brownian motion, a Gaussian process having positively correlated increments. This
strongly indicates that the summability condition is necessary.

The negative fractional model in which —% < d < 0 also violates (3.2), for although its
coefficients are summable, they sum identically to 0. The process is constructed as the simple
difference of a nonstationary fractional process (with % < d < 1). The limit of the partial sums
is in this case a Gaussian process with negatively correlated increments. However, note that
without the sum-to-zero property a process with |0, = O(k?1) for d < 0 is one of the cases
covered by Theorem 3.1, and the limit process is ordinary Brownian motion.

4 Conclusion

The objectives of this paper have been twofold. First, it has considered the operationalization
of the near-epoch dependence assumption, for establishing the FCLT conditions in nonlinear
models. The condition is easily checked for a range of models, and indeed, most of the classes of
model dealt with in the monographs of Priestley (1988), Tong (1990) and Granger and Terisvirta
(1993) are covered by our results. Second, it has presented a new FCLT for linear processes driven
by dependent sequences of random variables, whose conditions appear close to necessity for this
class of models. It is known that different limits obtain when the summability conditions are
violated.

The one limiting feature of the former analysis has been the need to assume that the shock
processes driving these models are independent. It has been pointed out that relaxing the sta-
tionarity assumption for the shock processes is generally rather trivial, but the analysis has used
the independence in a crucial way to simplify the derivations. This is a limitation, in the sense
that the theory itself allows the underlying process to exhibit unspecified local dependence, sub-
ject to a mixing condition. The difficulty in exploiting this generalization lies simply in the
greater difficulty of establishing the NED property. Of course, it can be argued that modelling
nonlinear dependence reduces the need to allow for unspecified dependence, and Proposition 2.4
illustrates this point. Extending the class of switching and threshold models to allow for condi-
tional heteroscedasticity represents one of several avenues for future research, and the conjecture
that geometric Lo-NED properties hold under comparable assumptions is a plausible one.

A Appendix

Proof of Lemma 2.1

First, noting that u; and h; are independent and w; is measurable with respect to fff;’f form > 0,
1/2 1/2
|2 — BE |, = Hht/ _ gtrmpl/ H2 (A-1)
Next, since h; and Eff:s h¢ are both bounded below by ag we have

W2~ (Bm) Y2 < g™ e - B as.

m
d h
and hence p2 _ (gpremp \U2|| o 12 t+m A
[ = (] < ™ e B (42
Also note that 12 12 1/2 it \1/2
i - s < 7 - ) o

in view of the fact that E/*™(.) is the minimum MSE, F/*"-measurable approximation of its

argument. Combining (A-2), (A-3) and (A-1) yields the result.
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Proof of Proposition 2.5
We evaluate the bound in (2.32). First verify that |z, < oo for r > 1. Let

z1r = el (|Jze—1] < a)

so that ||x1¢]|,, < a. Then note that ||z¢||,, < ||z1|ly, 4|zt — 21¢]|5,. , using Minkowski’s inequality,
where

2t — el 2 < AMlze—1llp, + llwellp,
m—1 A
<Y N ugjlly, + ad™
Jj=0

< 0

where time ¢ — m is the most recent occasion prior to ¢ in which the process is contained in the
band, and the last inequality holds for any m, finite or infinite.

Next, note that [[,—; ¢;_ is a random variable whose range consists of the values N for
integers j = 0,...,m, depending on the number of occasions that the band is breached in time
periods t —m to t — 1. If f,(.) denotes the p.d.f. of z; conditional on the process having stayed
within the band for the preceding n periods, there exists the recurrence relation

fu(@) = " Jfoo1(y) f(z —y)dy, n=1,2,3,...

where f(.) denotes the p.d.f. of u; and fo(z) = f(x — x0), and o denotes the point at which
the process is reset within the band following a breach. (See Cox and Miller 1965, Chapter 2.3).
Note that |xg| > Aa. The probability of still being inside the band at step n is therefore

a@de= [ faa) [ re - yyasdy

n
=1[9
=0

where
go(a, ) = f(z — xo)dx
—a
a(A+1)
< / flu)du <1
a(A—1)
and

S faay) [, fa - y)dady -
B ffa fnfl(y)dy

for n > 1. The inequality in (A-4) is strict because [* f(z —y)dz <1 for —a <y < a and the
latter inequality must be strict for |y| near enough to a because the support of the distribution
contains an open interval around 0 by assumption. Note that gg is increasing in a and decreasing
in A, whereas g,, which is the conditional probability that the band is not breached at step n, is
increasing in a and decreasing in n, with inf, g, = 0, sup, g, = 1, and g(a) = inf,, g, is defined
in (2.35).

gn(a) (A-4)

18



To calculate the Ly, /¢—1) norm of [[5=q ¢¢_i exactly from these formulae is feasible given
a form for f, but obviously very complicated. Instead, consider the parallel problem in which
gn = g(a) for every n. Also assume that the band is breached at exactly time ¢t — m. In this case,
we would have, exactly,

;ﬁ¢tk = (i A\2ri/(r=1) <7;L>g(a)mj(1 B g(a))j> (r—1)/2r

2r/(r—1) J=0

(g(a) +(1- g(a)))\Zr/(r_l))

m(r—1)/2r

(A-5)

The second assumption lowers the probability of the first breach occurring subsequent to time
t —m, and so increases HHZ;l Di_k Hzr -1y and is innocuous from the point of view of bounding

this norm. Moreover, since g, — g(a), the approximation in (A-5) becomes arbitrarily close as
m increases. 1

Proof of Theorem 3.1

This proceeds by adapting the proof of Theorem 3.1 of Davidson and de Jong (2000), (henceforth,
DdJ). Consider the quantities

[n€]—t
ani(§,8) = > 0;. (A-6)

j=max{0,[ng']-t+1}

Under assumption (3.2), |an(&,€)| = O(1) but not o(1), as n — oo, for 0 < ¢ < ¢ < 1 and
—o0 <t < [n€]. Therefore consider equation (B.5) of DdJ, which is

[né] [n€] [ng']
Z ant(éa 51)2 = Z ant(fa 5/)2 + Z ant(fa SI)Z
t=—00 t=[n§']+l t=—o00
= M1, + Mpy,. (A_7)

It is immediate by assumptions (3.2) and (3.3) respectively that My, = O(n(¢ —¢')) and My, =
o(n(€—¢")). Thus, to establish the variance of the partial sum write an; for a,;(0, 1) and consider
Lemma 3.2 of DdJ. The argument has to be somewhat modified, because in this case the sequence
of lag coefficients need not be monotone. Under assumption (3.3), |0;| = O(j~Y/?7¢) which
corresponds to the case d = 3 — ¢ in the lemma, whereas Y7 a2, = O(n), not O(n? 2).
However, the arguments of part (i) of the proof go through unchanged, since they depend only
on the properties of the a,;. In part (ii) of the proof, we find in place of equation (B-25) of DdJ

that ) . o
> B =0(B( X -0t E e Yl E) ) o). ()

1=—00 1=—00 1=—00

Hence, equation (B.26) of DdJ becomes

rpn—1
Z W2 =0(n"1B2). (A-9)

i=—00

However, B, may be freely chosen subject to the conditions stated, and with B, = n/2=" for
0 <7 < % the conclusion stated in (B.27) continues to hold.
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It follows that, under the conditions of the theorem, 02 = O(n) but not o(n). Since Theorem
3.1 of DdJ invokes the properties of the sequence b; (corresponding to 6; here) only insofar as
they lead to the conclusions of Lemmas 3.1 and 3.2 of DdJ, if follows that the theorem applies
in this case, except that the right-hand member of equation (B.36) becomes simply 6. B

Proof of Lemma 3.1

Consider the case 0 < € < 1. Placing the terms over a common denominator and applying the
mean value theorem, note that

1 1 An, kye)n+ k\°© n
__ A-1
ko (ntkeE © < k(n + k) > N,k e)n + k (4-10)

where 0 < A(n, k,e) < 1, by the strict concavity of the power transformation. Hence,

2
<l o >2 — ne? (/\(7% k,e)n + ’f)zg < nt/2pt/zn ) o121 (A-11)
k2 (n+ k) k(n + k) A(n, k,e)n+k
for 0 <n < % where on the right-hand side, the first term in parentheses is O(1) as n — oo and
o(1) as k — oo, and the second term in parentheses is o(1) in respect of both indices, assuming in
each case that A(n,k,¢) is bounded away from 0 as k — oo, for each n > 1 and each €. To show
the latter condition holds, re-write (A-10) after multiplying through by k¢(n + k)¢ and letting
6 =n/k, as
(1+6)° —1=2eb(1+ N1 (A-12)
Expanding the left-hand side of this equation in Taylor series to second order, and the right-hand
side to first order, simplifying and rearranging, yields

A=12+0(5). (A-13)

The case € > 1 holds similarly. In the case ¢ = 1, (A-10) holds with A = 1, but the obvious
cancellation in (A-11) yields the same conclusion as before. I
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