The Functional Central Limit Theorem and Weak
Convergence to Stochastic Integrals I: Weakly
Dependent Processes !

Robert M. de Jong
Michigan State University

James Davidson
Cardiff University

Final Revision, May 1999

Abstract

This paper gives new conditions for the functional central limit theorem, and weak convergence of
stochastic integrals, for near-epoch dependent functions of mixing processes. These results have fun-
damental applications in the theory of unit root testing and cointegrating regressions. The conditions
given improve on existing results in the literature in terms of the amount of dependence and heterogene-
ity permitted, and in particular, these appear to be the first such theorems in which virtually the same
assumptions are sufficient for both modes of convergence.

1. Introduction

Asymptotic theory for integrated processes is an area of research where results from functional
limit theory are crucial. These results are the main underpinning of the econometric analysis of
models with integrated and cointegrated variables. Phillips (1986, 1987), Phillips and Durlauf
(1986), Park and Phillips (1988,1989), Johansen (1988,1991), are the well-known seminal con-
tributions to what is now a very extensive literature.

In this theory, the sample statistics whose distributions are sought are typically functions of
sample moments in which the data may be (a) stationary, or (b) integrated, or a (¢) mixture of
both. The asymptotic analysis of each of these cases requires a different technique. Case (a)
is the standard one leading to Gaussian limit distributions. In case (b), weak convergence to
functionals of Brownian motion or related Gaussian processes must usually be proved, and the
technique of analysis is to combine a multivariate functional central limit theorem (FCLT) with
the continuous mapping theorem. It is important, especially for applications to economic data,
that a wide latitude should be permitted in the amount and type of dependence and heterogene-

1 We thank Bruce Hansen, Peter Phillips and two anonymous referees for their comments on earlier versions of

this paper. Any errors are ours alone.



ity, in the random variables under consideration. In case (c), the limits in question are stochastic
integrals (It6 integrals), and except in the univariate case, to show weak convergence calls for a
different technique of proof.

Results of type (b) are applied in all the above-cited studies, and results of type (c) are
also crucial in all but the first two. It is noteworthy in view of the now routine use of tests
based on these asymptotics (with critical values obtained by simulation) that in the latter case,
the available proofs of weak convergence impose relatively stringent conditions on the amount
and form of permitted dependence. For example, Strasser (1986), Chan and Wei (1988), and
Jeganathan (1991) impose a martingale difference assumption, ruling out serial correlation of
the increments, at least of the integrator process. Phillips (1988b) considers linear processes
with 1.i.d. innovations, and Hansen (1992) allows strong mixing, but all the cited conditions
are stronger than are known to be sufficient for the FCLT for the same multivariate process.
Moreover, the results given by Phillips (1988a) and Davidson (1994) contain errors.?

In this paper, we give new conditions for the multivariate FCLT, and stochastic integral con-
vergence. The former result dominates the existing ones in the econometrics literature using
comparable assumptions, such as Wooldridge and White (1988), and Davidson (1994) The-
orem 29.18. The conditions are only a little stronger than the best comparable ones for the
ordinary central limit theorem. Moreover, our results for stochastic integral convergence im-
pose virtually the same conditions as the FCLT, and so represent a substantial improvement
over previous results. Section 2 sets out the main assumptions, Section 3 discusses the FCLT
and Section 4 the corresponding stochastic integral convergence result. Section 5 concludes the
paper. The proofs are gathered in Appendices A-C.

2. Definitions and Assumptions

A key issue in this theory is the method of characterising weak dependence of the underly-
ing time series. We follow authors such as Gallant and White (1988) and P&tscher and Prucha
(1991) in working with the concept of near epoch dependence on a mixing process. This frame-
work has considerable generality. Whereas additional dependence can be allowed in specific
cases such as linear processes (see Davidson 2000 and Phillips and Solo 1992), our assumption
is more likely to be robust in cases of partially specified models, in which aspects of the short-
run data generation process are unknown. Such situations are endemic in econometric research.
As well as including infinite-order moving averages under suitable summability conditions,
near-epoch dependence can be shown to be satisfied in various nonlinear dynamic processes.
See Davidson (2000) for examples. Mixing processes are also allowed.

Our definition of near epoch dependence is as follows. Let X,,; denote a triangular array of
random variables defined on the probability space (2, F, P), and let || X || denote (E|X[? )i/p
forp > 1.

Definition 1 X,,; is called LQ'NED on random variables V,; if for m >0,

HXnt - nt| étmm H < dntV (2-1)
where F! . = 0(Vyg, ..., Vir) C F fort > s, d,; is an array ofposmve constants, and v(m) —

2 See Hansen (1992). Davidson’s (1994) Theorem 30.13 is corrected in the 1997 reprint of the work by revising
the conditions. The present paper shows that Davidson’s original theorem is correct as stated, even though the
proof contains an error.
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We refer to the d,,; as the “NED magnitude indices” and to the v(m) as the “NED numbers”. A
sequence such as v(m) is said to be of size —\ if v(m) = O(m~*~¢) for some € > 0, and we
also say that X,,; is NED of size —\. on the process V,;. In the application, V,,; can be a mixing
process. Of the different mixing concepts which have been defined, the econometrics literature
usually adopts either uniform (¢-) or strong (a-) mixing, and we consider both of these cases,
with similar ‘size’ terminology for the a- and ¢-mixing numbers. For definitions and details
see the above references, and also Davidson (1994).

De Jong (1997) appears to provide the most general CLT for NED functions of mixing pro-
cesses currently available. Letting { X,,;} denote a triangular stochastic array, it is shown in that

paper that ZtK:”l Xp -5 N (0,1), where K, is an integer-valued increasing sequence, if the
following assumption holds.?

—_= 1"

Assumption 1 (a) X,; has mean zero and ) ZtK:”I Xt
2

(b) There exists a positive constant array c,; such that {X,;/c,;} is L,-bounded for r > 2
uniformly in t and n;

(¢c) Xy is Lo-NED of size —1/2 on Vi, where Vi, is an a-mixing array of size —r/(r — 2), or
Xt is Lo-NED of size —1/2 on Vi, where Vi, is a ¢-mixing array of size —r/(2(r — 1)), and
At/ Cny is bounded uniformly in t and n;

(d) For some sequence b, such that b, = o(K,,) and b = o(1), letting r, = [K,,b,]}], M,; =
MAX(j—1)b,+1<t<ib, Cnt ANd Mp v, 1 = MaAXy b, 41<t<K, Cnt,

o o(p-1/2
1§I1%%Z{+1 M,; = o(b, /%), (2.2)
and .
> M2 =0(b,"). (2.3)
i=1

In the case of ¢-mixing, r = 2 is allowed as well if the assumption of uniform integrability of
X2,/c, is added to Assumption 1(b).

3. A Functional Central Limit Theorem

Let
Kn(§)

Xn(g) = Z Xnt for SE [07 1]7 (31)
t=1
where {K,,(£),n > 1} is a sequence of integer-valued, right-continuous, increasing functions
of &, with K,(0) = 0 for all n > 1, K,(§) is nondecreasing in n for all £ € [0,1], and
K,(€) — K,(¢) — coasn — oo if £ > €. The reference case obviously is X,; = n~'/2X,,
for some sequence of random variables X;, with K, () = [n¢]. This framework is basically the
same as that of Wooldridge and White (1988) and Davidson (1994) Chapter 29.

. d e . . .
3 In this paper, ‘—— denotes convergence in distribution, while ‘——’ denotes convergence in probability.
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Theorem 3.1 Let Assumption I hold for X,,, and assume that

§(E) = lim BX, () 6.2
exists for all ¢ € [0,1), and that*
Kn(6+6)
lim sup limsup Z (3.3)

6—0 £€]0,1—6] n—oo =K (€)+1
Then X, (&) <, X (&), where X (§) is a Gaussian process having a.s. continuous sample paths
and independent increments.

The line of argument we adopt to prove Theorem 3.1 contrasts with that of Wooldridge and
White (1988) and Davidson (1994). They obtain the FCLT by a direct proof that generates the
central limit theorem as a corollary, whereas we start with the finite dimensional distributions.
Under Assumption 1,

(Xa(€1)s- -, Xu(E)) —5 (X(&1), -, X (&) (3.4)

for any finite collection of coordinates £, ..., &, € [0, 1], where the limit distributions are a.s.
continuous and Gaussian. This follows from Theorem 2 of De Jong (1997) and the Cramér-
Wold Theorem (Davidson 1994, Theorem 25.5). According to Theorems 15.4 and 15.5 of

Billingsley (1968), X, 4 X , where X is continuous with probability 1, if (3.4) holds and X,
is stochastically equicontinuous. This is the property that for all ¢ > 0,

lim lim sup P ( sup  sup | X,(&) — X, ()] > 5) = 0. (3.5)
=0 n—oo £€[0,1] {¢":[¢~¢'| <6}

Therefore, to complete the proof it suffices to show that (3.5) holds for the partial sum process,

and that the increments are independent in the limit. These arguments are set out in Appendix

B.

If n(§) = & then X is Brownian motion. More generally, X belongs to an extension of the
class of transformed Brownian motion processes B, defined in Davidson (1994) Chapter 29.4.
n(&) must be nondecreasing everywhere on [0, 1], but under the present generalisation it need
not be strictly increasing everywhere, and increments of the process may equal 0 almost surely.

The dependence and heterogeneity conditions of Theorem 3.1 relax those employed by
Wooldridge and White (1988), and Davidson (1994), whose conditions are similar. These latter
theorems do not permit a size —1/2 of the NED coefficients, but employ a trade-off condi-
tion. The rate at which max; <<, ¢, is required to approach zero is dictated by this trade-off
condition, and also the condition

Kn(£+6)
sup lim sup Z 2, /6 < o0 (3.6)

£€[0,1),6€(0,1—€)  n—00 11

is imposed, which is obviously stronger than (3.3). For example, consider K,,(§) = [n&] and
cnt = t9n8~ 2 for 3 € (0,1/2), appropriate to the case X,; = t?nS~/2u, where u; is i.i.d.

4 Summations over an empty index set are defined as zero here.
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with finite variance. Then,

Kn(€+9)
limsup Y ¢},/8 > C((6+6) 7 =72/, (3.7)
T t=Ka(9)+1

for C' > 0, and clearly the condition from equation (3.6) does not hold, while the condition
from equation (3.3) does hold.
Plausible examples in which condition (3.3) fails to hold are not easy to construct, but con-
sider the case ¢, = tY/4n~1/3[(t < n?/1%). Note that max; <<, ¢,; = o(1), and that
ni/15

lim sup Z 2, =limsup n~ /3 Z tY4 = 4/5. (3.8)

n—00 n—00
t=1

One can clearly find a sequence b such that Assumption 1(d) holds here. However,

[(6+6)n] [6n)
lim sup limsup Z > hmhmsupZtl/4 1/3[(t<n4/15)
5H0§€[01 —§] mn—oo t=[en]+1 -0 pn oo
[6n]
— L . /4, —1/3
E%mln thrLrLs;}pZt n/°,4/5
t=1
= 4/5. (3.9

The limit of a process whose increments have variances evolving like ¢2, in this example has a
discontinuity at the origin. In other words, X (0) = O a.s.,,butfor 0 < ¢ < 1, X(§) =Y a.s,,
where Y is distributed as N (0,4/5).

Extending Theorem 3.1 to the multivariate case is straightforward, and we have the following
corollary, which follows directly from Theorem 3.1 and Theorem 29.16 of Davidson (1994).

Theorem 3.2 Let X,,; be an m-vector-valued array, and assume that for every m-vector \ of
unit length there exists an array c,; such that the conditions of Theorem 3.1 hold for X' X,

: . d . . .
all with respect to the same functions K,(§). Then X,, — X, where X is a m-dimensional
Gaussian process having a.s. continuous sample paths and independent increments.

Implicit in the assumptions of Theorem 3.2 is the existence of a matrix of covariance functions,
say 11(£) (m x m), having the property that A'n(&)\ is a positive nondecreasing function on [0, 1]
for all A of unit length. For example, such a case is given by 7(¢) = £°Q for a positive definite
matrix {2 and # > 0. Having the variances trend at different rates is also clearly possible,
although it is difficult to state a simple condition on 7 covering all the possible cases. Apart
from this requirement, there should be no difficulty in meeting the conditions of Theorem 3.2
provided Theorem 3.1 holds for each element of the vector. Thus, Corollary 1 of De Jong (1997)
shows that any constant array of the form c,; = t’n~1/2=7 for § < ~, with no restriction on
signs, will satisfy Assumption 1(d). Clearly, in this case, Assumptions 1(b) and 1(c) are satisfied
for all choices of A by the maximum of the m array constants specified in the elementwise
convergence. Condition (3.3) will hold likewise in this case, according to the earlier discussion.
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4.  Weak Convergence to Stochastic Integrals

Given vector-valued arrays U, (p x 1) and W,,; (¢ x 1), we next consider the convergence in
distribution of sums of the type

n—1 t

Gn = Z Z UnsWé,Hl (p xq) 4.1)

t=1 s=1
The case W,,; = U,,;, or more generally of the vectors having elements in common, is permitted
in our approach. Letting U, (¢) = 32" Uy, and W,,(¢) = S W, (U, W,) < U,wW)
under the conditions of Theorem 3.2. Note that with n large enough, U, (§) and W, (§) are
arbitrarily well by approximated by ]:,[:E]oo-measurable random variables under the NED as-
sumption. Hence U and W, having independent increments, are martingales with respect to the
same filtration. We seek conditions under which the weak limit of GG,,, after centring, is the It6
integral fol Udw'.

The only existing results of this type allowing serial correlation appear to be those of Phillips
(1988b) and Hansen (1992). Phillips (1988b) assumes linear processes with i.i.d. innovations.
Hansen (1992) assumes adapted strong mixing processes. Our result contains these forms of
dependence as special cases, and in general, dominates them in terms of size conditions.” The
assumptions also do not require U,; and W,; to be adapted sequences. These can depend on
events of the infinitely far future, provided the dependence is damped at such a rate that the limit
processes are martingales with respect to the same filtration. This result holds by the application
of the same type of blocking argument that allows the CLT to be proved under dependence.

Our theorem holds under essentially the same conditions as specified above for the FCLT. As
before, it need not be the case that U and W are Brownian motion., but this property will hold
for the leading case of X,,; = n™Y/2X; where lim,, ... n *E(> 1, X:)(O -, X;)' = Q (finite,
positive semi-definite). In the theorem it is useful to specify the joint convergence of the triple
(Un, Wa, Gy — AYW) | so that the result may be used subsequently to construct the limiting
distributions of the statistics familiar in unit root testing and cointegration theory, involving
Brownian functionals, by applications of the continuous mapping theorem.

Theorem 4.1 Let the conditions of Theorem 3.2 hold for X,; = (U],

nt»’

Wi and 1, () =

[n&] + 1. Then
1
(Un7 Wm Gn - ATI{W) i) (U7 W7/ UdW,) ’ (42)
where U and W are a.s. continuous Gaussian processes having independent increments, and
ATV =" N EULW,,. (4.3)
t=1 s=t+1

To establish this result we adopt the approach of Chan and Wei (1988), Theorem 2.4(ii).

Under the stated conditions, (U,,, W,,) <, (U, W). Therefore, by the Skorokhod representation
theorem (Skorokhod, 1956) there exist random processes (U™, W™) having the same distribu-
tion as (U, W,,), but which converge almost surely to (U, W), and these processes are used to

5 It can be difficult to determine whether one set of conditions actually contains another. However, we note that

if in the Phillips (1988b) model the linear MA coefficients are 1-summable (see Phillips 1992b page 530), the
process is Lo-NED on the i.i.d. forcing variables of size —3/2.
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construct an approximation to the integral. Letting G™ denote the counterpart of GG,, for these
variables, the joint distribution of (U™, W™, G™ — AY") is the same as that specified in (4.2).
To prove the theorem it is sufficient to show

1
G — AUV 2, / Udw, (4.4)
0

since the joint convergence follows as a case of Theorem 29.16 of Davidson (1994) in which
G™ — AUV is mapped into an (a.s. constant) element of C[0, 1]P9. Moreover, can we consider
the case of scalar U,, and WW,, without loss of generality, since the general case then follows by
applying Theorem 30.14 of Davidson (1994).

The convergence in (4.4) is shown in two steps, using a blocking argument. Let k,, (the num-
ber of blocks) be a nondecreasing sequence such that k,, — oo asn — oo, and lim,, ., k, (1/n+
62) = 0, where §,, is the uniform distance between (U™, W") and (U, W) except on a set of
arbitrarily small probability, and let

Gr = Y Ual, )Wl — Wal€, 1) 4.5)

where £; = j/k,. Also, let G™ denote the counterpart of G}, for (U™, W™). The first step, based
on Chan and Wei (1988), is to show that

1
G™ — / Uudw| 2 o. (4.6)
0

This proof can follow that of Theorem 30.13 of Davidson (1994), line for line up to equation
(30.78), with appropriate changes of notation.

Since the distributions of G, and G™* are the same, it suffices for the second step to show
that

G, — G — ATV 5 0. 4.7)
Noting that
Gn—G: =AW = A, - B, (4.8)
where
kn nj—1 t-nj_1—1
An = (Un,tmen,H»l - EUn,tmen,t+1) (4'9)
J=1 t:nj,ﬁ»l m=0
and
kn mnj—1 t—1
Bn - Z Z Z EUn,tmen,H»h (410)
j=1lt=n;_1m=t-n;_1
where n; = [n¢;], for j = 1,..., ky, the proof of (4.7) is completed by showing A, %5 0and

B,, — 0. These arguments, which are fairly lengthy, are given in Appendix C.

5. Conclusion

This paper has given new weak convergence results which place the asymptotics underlying the
theory of cointegrating regressions on virtually the same footing as standard asymptotics. We
prove the functional central limit theorem under conditions similar to the best ones known to
us for the ordinary CLT, from the point of view of the amount of dependence and heterogeneity



permitted in the underlying random processes. We also show that stochastic integral conver-
gence holds under effectively the same conditions, something that has not been demonstrated
previously to our knowledge.

Appendix A. Technical Lemmas for Mixingales

An important tool for obtaining our results is the mixingale property. L,-mixingales were in-
troduced by McLeish (1975a), and the extension to L,-mixingales, p > 1, by Andrews (1988).
Let G,,; denote an array of o-fields, increasing in ¢ for each n.

Definition 2 {X,;, G, } is called an L,-mixingale if for m > 0,
“ Xnt - E(Xnt|gn,t+m) “pé ant¢(m + 1)7 (A'l)
| E(Xnt|Gnt—m) lp< anetp(m), (A-2)

and p(m) — 0 as m — oo.

The notation here and in the rest of the paper is as in Davidson (1992,1993) and De Jong (1997).
The a,,; are referred to as the mixingale magnitude indices, and X,; is a called a mixingale of
size —\ if ¢)(m) is of size —\.

Under integrability conditions, random variables that are NED on a mixing process are
known to be mixingales, and in particular we have the following standard result, see for ex-
ample Davidson (1994), Corollary 17.6.

Lemma A.1 If X, satisfies parts (a), (b) and (c) of Assumption 1, { X, Fy .} is an Ly-
mixingale of size —1/2 with mixingale magnitude indices cy.

Results of this kind are often used implicitly in the sequel, where we proceed by showing that
certain functions of the variables are NED on V,,; and applying the same type of argument.
While the mixingale assumption is not structured enough to yield weak convergence results
without supplementary conditions, since for example it may not be preserved under transfor-
mations, it is useful at certain stages of the proofs. In addition to the various known mixingale
properties documented in sources such as Davidson (1994), we make use here of the following
results.

Lemma A.2 [f{Y,;, F,;} is an L,-mixingale with magnitude indices a,; and
k

lim sup Z Apj < 0O (A-3)
and for all q,
kn
Y (B(Ynj|Fnjg) = E(Yj| Fojg1)) == 0, (A-4)
j=1
then
kn
> v, 0. (A-5)
j=1
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Proof. Note that for all m,

kn kn
YV o= > (Y — E(Yaj|Fujim))
j=1 j=1

+ Z Z Yn]|~7:n J+q (Ynj|~7:n,j+qfl))
g=—m+1 j=1
kn
+ > B(Yo|Fjm)- (A-6)
j=1
The L;-norm of the first and third term is bounded by Z?Zl anj®(m), which can be made

arbitrarily small by selecting a large value of m. The second term converges in probability to
zero by the requirement of Equation (A-4). See also Andrews (1988). i

Lemma A3 Let {X,;, G} and {Yoi, G} be triangular Lo-mixingale arrays of size —1/2
with mixingale magnitude indices a2y, and aY, respectively where Y ;  (a)* = O(1) and
Sori(ak)? = OQ). If v, > 1 is an increasing integer-valued function of n with ~y, — 00

as n — oo, then
n

lim > N [B(XuYoo) (|t = 5| > 7,) = 0. (A7)

t=1 s=1

Proof. This is analogous to Lemma 4 of De Jong (1997). 1

Lemma A4 [If {X,;, G} and {Ynt, Gt} are Lo-mixingales with mixingale numbers 1 (7)
and V¥ (j) and magnitude indices a’%, and a¥,, then

Z Z XntYns

t=1 s=1

nt»’

n . 1/2
< C (Z(aiﬁ)ZZaogj)%X(j)?)

t=1 j=1

for0 < C < oo.

Proof. Define

Xntl - E(Xnt|gn,tfl) - E(Xnt|gn,tflfl) (A'9)
and

Ynsi - E(Yns|gn,sfi) - E(Yns|gn,sfifl) (A'IO)
and note that

>y ZZXnqu

l=—c0i=—00 t=1 s=1

>y ZZXnqumt s s—i)

|=—c0 i=—00 || t=1 s=1

9

Z Z XntYns

t=1 s=1
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oo 00 n t
+ ) DY XYt —1<s—1i)
l=—c0i=—o00 || t=1 s=1 1
oo 00 n t
l=—c0 i=—00 || t=1 s=1 1

Consider each of these three sets of terms. Note first that the sequence
t
> XaaYoul(t—1>s5—i), 1<t<n (A-12)

is a martingale difference with respect to the G, ;_;, and therefore, for some constants C; > 0
and C, > 0,

oo oo n ¢
Z Z ZZXntlYnsiI(t_l> s —1)

|=—c0 i=—00 || t=1 s=1 1
. o\ 1/2
< O Z Z E ZXWIIQ% (Zn)
l=—001=—00 s=1
/2 o ¢ 2\ 1/2
<ay (ZEsz> 2 | P e (ZYm)
l=—00 i=—00 - s=1
1/2 1/2
< Z (ZEX"”> Z <ZE n) , (A-13)
l=—00 1=—00 s=1

where these inequalities are respectively by the Burkholder, Cauchy-Schwarz and Doob in-
equalities. A similar argument holds for the second set of terms in (A-11) noting that

n
ZXntlYnsiI(t —l<s—i),1<s<n
t=s
is a martingale difference with respect to G, s_;, and also that for each s,

n s
E Xntl E Xntl .
t=s t=1

< 2 max
1<s<n

(A-14)

Finally, we have

>y

|=—0c0 1=—00

Z Z ntlYnsz[ —l=s- 2)

t=1 s=1

1

< Cs Z Z Z | Xt 2] Yoroisiil (1 <t =147 <n) |2

l=—00i=—00 t=1

o5 (o)

l=—o0

IN
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o) n 1/2
X sup Y (Z EY? i l1<t—1+i< n)> (A-15)

—oosl<oo ;o \i=1

for C's > 0.
Thge majorant of (A-11) does not exceed the sum of (A-15) and two terms of the form (A-13).
Now, the lemma follows by combining the mixingale assumption with the fact that
EX2, = EE(Xu|Gui)’ — EE(Xni|Gnii-1)
E(Xo — E(Xut|Gny1-1))" = E(Xpe — E(XotlGni1))®,  (A-16)
with similar equalities for Y,,,;, and the fact that for a monotone decreasing sequence {x;,j > 1}
the relation

o0

o 1/2
Yo 2-at,)?<C (Z (1ogj)2w§-> , (A-17)

J=1 J=1

for C' > 0, holds by an argument similar to McLeish (1975a) Thm. 1.6. &

Appendix B. Proof of Theorem 3.1

Fix 6 > 0, and let §; = j6/2 for j = 0,...,[2/6]. For any pair &, & such that [ — £'| < 6/2,
let js(&,€") denote the maximal value of 7 such that £ > ¢ s; and & > ¢ s;» and note that
0 <& —E&sjyeen <0,and0 < g — Esjs(e,cn < 0. In addition, define
K7 (min(£+6,1))
i) = Y. oy (B-1)
t=Kn(§)+1
and let X, () = X,,(1) if £ > 1. Then
£€[0,1] {¢":]6—¢"|<8/2}

P ( sup sup X (8) — Xa(§)] > 6)

= P sup sup [ Xn(§) — Xn(fm(g,g’)) + Xn(fm(g,g’)) - Xn(§,)| > €
£€l0,1] {¢":]¢—¢'|<6/2}

< 2P max sup | Xn(§) — Xn(&s5)| > e/2
.7:0 7777 [2/5] {£0<£*£53<5}
[2/6]
< 2ZP < sup | Xn(§) — Xu(&s;)| > 5/2>

j=0 {£:0<£*£6j<5}

(2/6]
_ 2zp<< wp Xa(6) = XalEr)])?

=0 {£:0<€—-E4,<6}

XI(( sup [ Xn(€) = Xa(Es))? > 2/4) > 52/4>
{6:0<€—E5, <8}
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(2/6]

< 2) 4e°E X, (6) — X, (€52
< ;0 £ ({5:051711;%5“ () (&5)1)
XI(( sup | Xn(€) — Xal&s)])* > €2/4)
{£:0<€—E5, <8}
[2/8]
= 2;ui<§5j,é>4s2E<{£:O<§ugj<5}|xn<§>—Xn<55j>|/un<§5j,é>>2
XI(( sup | Xn(€) — Xn(E;) 1P va(Es;, 0) > €%/ (4vn(Es;0 0)%))
{£:0<€—E5,;<8}
= 4(; ) j=0m2/5) 4€2E({szo<§ugj<5} () = Xl val8i: 8
XI(( sSup |Xn(€) - Xn(é.&j)|2/yn(€5j76)2) > 52/(4Vn(€5j76)2))
{£:0<€—E5, <8}
< Ce® max BE( sup | X,(6) — X&)l /vn(Es;, 6))?

3=0,...,[2/9] {£:0<6—E5, <0}

XI(( sup X&) = Xu(&sj) P /vn(Es;, 6)%) > €2
{£:0<€—E5,;<8}

2 —1

(4 max vn(8s;0))7) (B-2)
for some finite constant C' > 0. The second inequality follows from subadditivity, the third
inequality is Markov’s, and the remaining steps follow from the assumptions.

Next, note that by the mixingale property (Lemma A.1) and Corollary 16.14 of Davidson

(1994), the sequence

Y, (6,¢) = sup | X0 (€) — Xu(§)]/vn(€,0) (B-3)

{&:0<€—¢'<6}
is uniformly square-integrable. Moreover, Assumption 1(b) implies that this property is inde-
pendent of the segment of the data sequence represented by Y,,.° In other words,
limsup max EY, (4, féj)ZI(|Yn(5,§5j)| > K)

oo j=0,...,[2/6]
—  max_limsup BY, (6,6,)21(Ya(8, &) > K)

= f(K). (B-4)
where f(K) does not depend on 6, and f(K) — 0 as K — oo.
Since 6 is arbitrary, it follows by (3.5), (B-2) and (B-4) that X, (&) is stochastically equicon-
tinuous on [0, 1] if

lim 1i 268 =0. B-5
g lmoup g #3650 e

Since the ‘max’ and the ‘limsup’ in equation (B-5) can similarly be interchanged, this holds by
the assumption of equation (3.3).

Next, we show that X (£) has independent increments. In view of the Gaussianity, it suffices
to show that for any set {&;,...,&, : 0 < & <& < ... <& < 1}andalli < j, X(§;) —

6 Compare McLeish (1975b) Lemma 6.5, and McLeish (1977), proof of Thm 2.4.
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X (&1)and X (§;) — X(&;_,) are uncorrelated. This follows because
E(X (&) — X (&)X (&) — X(§51))
=lim E(X,(;) — Xn(fifl))(Xn(fj) - Xn(gjfl)% (B-6)

n—oo

where for any fixed 6 > 0,

[E(Xn (&) = Xn(§i-1))(Xn(&5) — Xn(€5-1))

|
Kn(&;) K”(£j71+5) n(&;) Kn(ﬁj)

< | > Y. EXuXa|+ Y. EXuX
t=Kn(&;_1)+1s=Kn(&_;)+1 t=Kn(&_1)+1s=Kn(&;_1+6)+1
Kn (&) Kn(£_1+6)
< > X > Xm
t=Kn(€;_1)+1 o ||s=Kn(g;_0)+ )
Kn(1) Kn(1)
+ | ntan|I S _t| > K (f] 1 +6) (Sz)) (B'7)
t=1 s=1
Note that

Kn (1) Kn(1)

lim Z Z |EX 5 Xns| I(|s — t] > Ky (fg 1 +0) — Ka(&) =0 (B-8)

n—00
t=1 s=1

for § > 0, by Lemma A.3 and the requirement that K,,(§) — K,,(¢') — oo forall £ > ¢', and
also that
Kn(€;_119)

il | DL X =0
s=Kn(§;_1)+1

by the assumption in equation (3.3). Since 6 is arbitrary in (B-8), it follows that

E(X(&) — X(&-1))(X(§;) — X(&;-1)) =0.
This completes the proof. &

Appendix C. Proof of Theorem 4.1.

First, write
kn nj -1

:Z Z Z EUpt—mWhit1I(m < gy)

j=1t=nj_1m=t—-n;_1
kn mji— t—1
+ Z Z Z EUn,tmen,t+lj(m > Qn) (C'l)
j=lt=n;_1m=t—-mn;_1
where g, is a nondecreasing sequence such that g, — oo as n — oco. We define ¥, and ¢! as
the constants with respect to which Assumption 1 holds for U,,; and W, respectlvely Note that
since
lim max max{ )2, (CW)Z} =0 (C-2)

n—oo 1<t<n nt

13



by Assumption 1(d), it is possible to choose k,, and g,, such that
lim k,q2 max max{ )2, (cW)Z} = 0. (C-3)

nt
n—0o0

The second term in (C-1) converges to zero, since its absolute value is bounded by
n t—1
D NEUns—mWoatlI(m > ) = o(1) (C-4)
t=1 m=1
by Lemma A.3. For the first term in (C-l), note that
kn njil
Z Z Z |EUn,tmen,t+lj(m S Qn)|
j=1lt=n;_1m=t-n;_1+1
kn Mj—114qn

Z Z Z |EUnt-mWatp1l(m < gn)|

j=1 t=nj;_1 m=t-n;_1+1

= 0 (kznqn max max {(c%,)?, (CZ)Z})
= o(1) (C-5)
by (C-3), noting that values of ¢ exceeding n;_1 + g, contribute zero to the sum.
To show that A, 2, 0, first define

IN

h(a,z) = zI(|z| <a)+al(z > a) —al(x < —a) (C-6)
and
gla,z) = (x —a)l(x >a)+ (z+a)l(z < —a) (C-7)
and note that x = g(a,z) + h(a,z). For some K > 0 to be chosen, define
nt - g(chw nt) Eg(Kcnt7 Unt) and U:LrtL - E(Unt|gn,tfm)7 (C'8)
and _ _
Uni = WKY,,Uy) — ER(KCY,,Uy) and U™ = E(Upi|Got—m), (C-9)

where G, = 0(Vor, Vi1, - - -). Note that Uy, = Ui+ Une. Also note that g and h are Lipschitz
functions and therefore, U,; and U,,, are L,-NED on V,, for all K, with NED magnitude
indices c , and NED numbers v(m). (See Davidson 1994, Theorem 17 12). Therefore, U,; is

also an L2 mixingale of size —1/2 with mixingale magnitude indices c,, implying that
| U ||lo< Cm 12l (C-10)
for p > 0and C' > 0 and also, by Assumption 1(b), that
U5 o< et Sup [Unt /o (1Une] /€y > K) ||, < i f (K) (C-11)

for some f(K) not depending on ¢ or n, where f(K) — 0 as K — oo. These inequalities
further imply that

| Ty Nlo< (Cm 2ol ) H (b f (KO = Ol f (R 2wl (C-12)

nt

for C" > 0. Therefore, U,, is an Lo-mixingale of size —1/2 with mixingale magnitude indices
. f(K)* for some small enough x> 0. Similarly, we may decompose W,,; into W,,; and W,

having the same properties with respect to constants ¢!,
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Note that
A = Z Z Z UnsWn A EUnsWn,t+1 + UnsWn,t+1 - EUnsWn,t+1
j=1 t=p; s=p;
+ UnsWn,t+1 - EUnsWn,t+1 + UnsWn,t+1 - EUnsWn,t+1)7 (C'13)
where for economy of notation we henceforth use the symbol p; to denote n;_; + 1. Consider

the four sums of terms corresponding to this decomposition. It follows by Lemma A.4 that the
L,-norms of all these sums except those involving U,,,WV,, ++1 are of order

kn n;j n;j 1/2
O D (D> (@ fE)» | =0 (K™, (C-14)
j=1 \s=p; t=p;

where the equality in (C-14) is by assumption. By choosing a large enough K, the limsups
of the corresponding components of A,, can be made as small as desired. Accordingly, let the
remaining component be defined as

TL

Z Z Z UnsWn t+1 T (UnsWn,t+1)7 (C-IS)

Jj=1 t_p] S=Dpj

and we complete the proof by showing that for all K > 0, A, — 0, by an application of
Lemma A.2.
First write

kn
A=)V, (C-16)
j=1
where
njfl t
- Z Z(UnsWn,t+l - EUnsWn,t+1)' (C'17)
t=p; s=p;
Define F,; = 0(Viin,, Vam,—1, - - ) and Hﬁfjmm = 0(Vam,—m_141:- -+ » Vanjsm )» and for brevity

of notation let Ejjjjj denote E(. |Hffjmm) Then, note that for m > 0 there exist positive con-
stants 'y, Cy and C'5 such that

I Yoy = BT Y05 |

n;j—1 ¢
X M
- Uns Wn t+1 T Ejfm Uns Wn,t+1)
t=p; s=p; 1
n;j—1 ¢
§ ’ § ’ j+myy
S Uns n,t+1 Ejfm Wn,t+1)
t=p; s=p; 1
nj—1 ¢
§ : § : 7+ m J+myy
E n t+1 Ejfm Uns)
t=p; s=pj

1
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nj—1 ¢

Z ZEj m nt+1E]+mUns Egj:nan,t+IUns

t=p; s=pj 1
n;—1 . t
S Z (Wn,t+1 - Ejj'i:nan,H»l) Z Uns
t=p; $=pj 1
n;—1
112 Was Z — B U,)
t=p; S=Pj 1
n;—1 t ‘
+ Z nt+1 Z(Uns - Ejjt:nnUns)
t=p; 5=pj 1
n;—1
< Z [ We1 — E mWaei, Z Uns
t=p; S=DpPj 2
n;—1 n;—1 n;—1
+ Z HUns - Eﬁ:ﬁUnSHZ Z Wit Z Ej m W i1
$=Dpj _p] 2 = =Pj 2
1/2
nj nj
< Co | Yo e | mnfky) LY ()
t=p; $=pj
. 1/2
J nj
+C Ay | (mn/ky) 27 [ ()
$=p; t=p;
1/2
nj nj
< Com VP (k) [ ) ()P () (C-18)
$=p; t=p;

for some ¢ > 0. The first inequality follows from rearranging the terms and the norm inequality,
the second inequality uses iterated expectations, the third is the Cauchy-Schwarz inequality and
rearranging of terms, the fourth uses the NED definition, Theorem 1.6 of McLeish (1975a)” and
the size assumptions, and the fifth is obtained using Jensen’s inequality. For the case m = 0, all
except the two final steps of (C-18) hold, but for this case we have

. n 1/2
| Yoy = EYag M) 1< Ca | D ()P (e )? (C-19)
$=p; t=p;

for Cy > 0, using some of the same arguments as before. We have therefore established that
Y,; is L1 —NED of size —1/2, on a mixing process. Since it also possesses all its moments, it
follows by Corollary 17.6 of Davidson (1994) that {Y,,;, ,,;} is also an L;-mixingale of size

7 See also Davidson (1994), Theorem 16.9.
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—1/2, with respect to constants

. n 1/2
anj = [ D () ()] (C-20)
$=pj t=p;

Note that limsup, ,__ S°%" i1 anj < 00, since by assumption,

max {hm sup Z )%, lim sup Z Cot } (C-21)

n—oo

By Lemma A.2, the proof is therefore complete if we can show that for all ¢,

kn
> (EYnil Fuiq) = BVl Faj—g1)) == 0. (C-22)
j=1
We next write ~ ~ ~ ~ B
Ut = U = U} + U (Um u.m) (C-23)

and letting 1(m) denote the mixingale numbers relating to U,,, note that {U,,, — U™, G,;} and
{U", Gnt } are Lo-mixingales with mixingale numbers equal to ¢ (m) for | < m and (1) for
[ > m. Therefore, by Lemma A.4 and the assumptions,

TL

hm sup Z Z Z UnsWn,t+1|~7:n,ij) - E(UnsWn,t+1|~7:n,ijfl))

n—oo j=1 t=p; s=p;
_ Z Z Z (E((U,T[; — U{m)Wn,t+1|~7:n,j*q)

—E((Ug; = Uy )Wagal Faj—g-1))

1

m 0o 1/2
< 0<<¢<m>22<logl>2+ > ¢<l>2<log<l>>2>
_ Om) B (C-24)

for some C' > 0 and € > 0. Therefore by choosing m large enough, the difference between
the expressions can be made negligible. A similar argument can be used to replace W, ;1 by

Wft 1 W; ++1 in the last expression, and therefore it remains to show that for all ¢, K and m,
Z Z Z T Wy = W )1 P mg)
Jj=1 t=p; s=p;
—E((Uns = U Wls = Wo i) Fagg-1)) = 0. (C-25)
Noting that
m—1
Ui = U = 3 (O = U3) (C-26)
h=—m
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and
m—1

W:ft+1 - Wr?tril = Z (Wr?ﬁl - Wr}LL,t+1)7 (C-27)
h=—m
it follows that this result holds if for all ¢, K, h and [,

kn nj—1 ¢

o2 (BUUL = U (Wy ey = Wotk) I Fag—)

j=1 t=p; s=p;
_E((Ugs - Ur}fjl)(WrIL,tH - Wéﬁilﬂfmﬁqﬂ))
= > (BE(Znj|Frj—q) — E(Znj|Fnj—q-1))

*.0, (C-28)

Since the terms of (C-28) are uncorrelated, the latter statement is true if for all ¢, K, h and [,
lim. Y EZ =0 (C-29)

However, note that

kn
2
§ EZ,
kn njfl njfl t1

- Z Z Z Z Z U:LLSII Ur}fsljl)(Wvﬁtlﬂ - erftﬁﬁ

J=1 t1=pj ta=p; s1=p; s2=p;

X (On2, = Unz Y Wiy = Wi2h0)- (C-30)
Consider, as representative, the terms for which
—hl§t1+1—l1§82—h2§t2+1—l2. (C-31)

The other cases are treated identically. First, note that by the martingale difference property of
the four terms in Equation (C-30), the terms in that equation are zero unless s, —hy = to+1—15.
Therefore, for the terms that satisfy the above restriction, we have, applying Lemma A.4 once
again,

TL

nj—
E E E hi h1+1 1 l1+1
Unsl Unsl )(Wn t1+1 Wn,t1+1)

Jj=1 ti=p; s1=p;

n;—1
h ha+1 171l F7l2+1
X Z I1<to+1=l+hy <n)(U.3, him — Unityrng) Wiloon — Wilibin)
to=p;

nj—
E E h1 h1+1 T701 _ mrli+l
Unsl Unsl )(Wn,t1+1 Wn,t1+1)
Jj=1 |{t1=p; s1=p; 1

n;—1

X Z I(l <ty + 1- l2 + h2 < n)(U:LLtQH lo+ho Uhﬁl )(Wgtﬁl - erftgil)

n,to—la+ho
to=pj;
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1/2

kn nj mj
- 0 PICARBIEE
j=1 \s=p; t=p;
nj
X Z I(1 <ty+1—ly+hy <n)Cpch i1 byin,
t2=pj;
kn Ty j
S 3D BCAD DK
Jj=1 s=p; t=p;
1/2
nj nj
. U\2 W2
= Oy, | Dl e
s=p; t=p;
~ o), (C-32)

where the last equality follows from the assumption of Equation (3.3). This completes the
proof. i
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