Occupational Choice and Network Effects in Tax Evasion

Nigar Hashimzade (a) Gareth D. Myles (b) Frank Page (c) Matthew Rablen (d)
University of Reading (a), University of Exeter (b), Indiana University (c), Brunel University (d)
Financial support from the ESRC/HMRC/HMT is gratefully acknowledged

SHADOW 2011

July 29, 2011
Outline

- Introduction
- Standard model
- Behavioural approach
 - Subjective probabilities
 - Social interaction
- Occupational choice
 - Tax evasion network
- Aggregate risk-taking
 - Extensions
- Concluding remarks
Introduction

- An understanding of the individual tax compliance decision is important for revenue services.
- Their aim is to design policy instruments to reduce the tax gap.
- Tax evasion is an area where orthodox analysis has been challenged by behavioural economics.
 - Non-expected utility theory
 - Social interaction
Standard model

- The probability of being detected is p
- Taxpayer chooses declaration X, or evasion $E = Y - X$, to maximize expected utility

\[
\max_{E \in [0,Y]} V = pU(Y^c) + (1-p)U(Y^n)
\]

$Y^c = (1-t)Y - f t (Y - X) = (1-t)Y - f t E$

$Y^n = Y - t X = (1-t)Y + t E$

- The sufficient condition for evasion to take place ($0 < E \leq Y$) is

\[
p < \frac{1}{1 + f} \iff \frac{pf}{1-p} < 1
\]

For $f = 1$ this requires $p < 0.5$ for everyone to evade. In practice, p is much smaller but compliance rates are high.
Behavioural approach

- Behavioural economics can be seen as a loosening of modelling restrictions
- Two different directions can be taken:
 - Use an alternative to expected utility theory
 - Reconsider the context in which decisions are taken
Non-expected utility

- There are several non-expected utility models
- These have the general form

\[V = w_1(p, 1 - p) \nu(Y^c) + w_2(p, 1 - p) \nu(Y^n), \]

- \(w_1(p, 1 - p) \) and \(w_2(p, 1 - p) \) are translations of \(p \) and \(1 - p \) (probability weighting functions)
- \(\nu(\cdot) \) is some translation of \(U(\cdot) \)

- Different representations are special cases of this general form
Prospect theory does three things

(i) Translates the probabilities

(ii) Assumes payoff is convex in losses and concave in gains

\[v'(y) > 0, \quad v''(y) < 0 \quad \text{for} \quad y > 0 \quad \text{and} \quad v''(y) > 0 \quad \text{for} \quad y < 0 \]

(iii) Measures payoffs relative to a reference point, \(R \)

The objective function is no longer globally concave

- This creates analytical problems

The results are sensitive to the choice of \(R \)
Subjective probabilities

One way to make progress is to assume probability of detection depends on declared income

- This can be incorporated in the prospect theory model or in the standard model
- Helps explain high compliance rate
- Can change the direction of the tax effect

Alternatively, assume subjective probabilities, or beliefs, are formed via social interaction

Important: access to evasion opportunities

- May not be possible if in employment
Social interaction

- Social interaction allows information to be transmitted through a network
- This information affects evasion behaviour by changing beliefs
- The exchange of information is determined endogenously through choices that are made
- The choices are:
 - Occupation (employed or self-employed)
 - Level of evasion if self-employed
Assume that a choice is made between employment and self-employment.

Employment is safe (wage is fixed) but tax cannot be evaded (UK is PAYE).

Self-employment is risky (outcome random) but provides opportunity to evade.

Selection into self-employment is dependent on personal characteristics.
A project is a pair \(\{ \pi_s, \pi_u \} \) with \(\pi_s > \pi_u > 0 \)

An individual is described by \(\{ w, q, \rho, \pi_s, \pi_u, \rho \} \)

Evasion level is chosen after outcome of project is known

So in state \(i \in \{ s, u \} \) \(E_i \) solves

\[
\max E [U_i] = pU((1 - t)\pi_i - ftE_i) + (1 - p)U((1 - t)\pi_i + tE_i)
\]

The payoff from self-employment is

\[
E [U(\pi)] = (1 - q)E [U_u] + qE [U_s]
\]
Occupational choice

- Occupational choice compares payoffs from the alternatives
- Self-employment is chosen if

\[E[U(\pi)] > U(w) \]

- What is the outcome in this setting?
 - Example: CRRA utility
 \[U(y) = \frac{y^{\rho-1} - 1}{\rho - 1} \]
 - \(\{q, \pi_s, \pi_u, p\} \) are fixed
Occupational choice

Cut-off wage with (solid line) and without (dash line) evasion

- Employment above the locus
- Self-employment below the locus
- The less risk-averse choose self-employment
- But these people will also evade more
 - Occupational choice acts as a self-selection device

\[q = 0.5; \quad \pi_s = 3; \quad \pi_u = 1.5; \]
\[p = 0.5; \quad f = 0.75 \text{ (solid)} \quad \text{and} \quad 1 \text{ (dash)} \]
Formation of beliefs

- A network is a set of bi-directional links, described by a symmetric matrix of zeros and ones.
- Example: the network shown in the diagramme is described by matrix A

$$A = \begin{bmatrix}
0 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 \\
\end{bmatrix}$$
Formation of beliefs

- Each period an action is chosen
- The network is revised as a consequence of chosen actions
- A random selection of meetings occur (a matrix C of 0s, 1s)
- Set of permissible meetings is determined by the network ($M = A \ast C$)
- At a meeting information is exchanged
- Beliefs are updated
Tax evasion network

- There are n individuals
- Individual characteristics, \(\{w, q, \rho, \pi_s, \pi_u, p_0\} \) are randomly drawn at the outset
- A choice is made between employment and self-employment
 - If self-employment is chosen, outcome \(\pi_s \) or \(\pi_u \) is randomly realised
 - Given the outcome evasion decision is made
- Those in self-employment are then randomly audited
Tax evasion network

- If audited, then p goes to 1, otherwise p decays:

 $$p_t = dp_{t-1}, \quad d \in [0, 1], \quad t = 1, 2, \ldots.$$

- Meetings occur randomly between linked individuals

 - Information on p is exchanged:

 $$p_{t+1}^i = \mu p_t^i + (1 - \mu) p_t^j.$$

- Employed (self-employed) exchange information only with employed (self-employed)
Simulation results

Average subjective probability of detection: \(d = 0.95 \) (left) and 0.25 (right), \(\mu = 0.75; \ n = 1000; \ T = 200 \) (first 100 discarded)

\[\rho \sim \text{uniform } [0, 10], \text{ true probability of audit } a = 0.05, \text{ tax rate } t = 0.25, \text{ fine } f = 1.5. \]
Simulation results

Average risk aversion: self-employed (left) and employed (right):
\(d = 0.95; \mu = 0.75; \ n = 1000; \ T = 200 \) (first 100 discarded).

\(\rho \sim \text{uniform } [0, 10], \text{ true probability of audit } a = 0.05, \text{ tax rate } t = 0.25, \text{ fine } f = 1.5. \)
Aggregate risk-taking

Is the aggregate degree of risk-taking socially efficient?

- Kanbur (1979), and Black and de Meza (1997):
 - In a competitive economy with costly state verification an inefficiently low proportion of individuals enter risky occupations
 - A direct or indirect subsidy to risky occupation, balanced by a tax on riskless occupation, may increase welfare for everyone

- If there is too little risk-taking without tax evasion, then the possibility of evading encourages risk-taking
 - Setting policy to reduce evasion will drive risk-taking further from the social optimum
 - A more relaxed tax enforcement would serve as an indirect subsidy and may, therefore, improve the welfare.
Aggregate risk-taking

Converse argument:
- Taxation has a variance-reducing effect on earnings from self-employment
 - Government engages in risk-sharing
 - Therefore, encourages self-employment
- Evasion has the opposite effect and raises the variance again
- So, from this argument, policy should try to reduce evasion.

Which of these two arguments is correct?
Aggregate risk-taking

Example of a relaxed tax enforcement policy

- Reduce evasion fine: $\Delta f < 0$
- Increase tax rate: $\Delta t > 0$
- Total revenue remains constant:

$$\Delta G \approx \frac{\partial G}{\partial f} \Delta f + \frac{\partial G}{\partial t} \Delta t = 0 \implies \Delta t = -\frac{\partial G}{\partial G/\partial t}$$

- Welfare effect:

$$\Delta W \approx \frac{\partial W}{\partial f} \Delta f + \frac{\partial W}{\partial t} \Delta t = \Delta f \left(\frac{\partial W}{\partial f} - \frac{\partial W}{\partial t} \frac{\partial G}{\partial f} \right)$$

- The policy is welfare-improving iff

$$\frac{\partial W}{\partial f} - \frac{\partial W}{\partial t} \frac{\partial G}{\partial f} < 0$$
Aggregate risk-taking

- A fall in the evasion fine attracts marginal individuals into self-employment
 - Average (expected) earnings increase for both employed and self-employed
 - Welfare rises

- A rise in tax decreases net income for both occupations
 - Welfare falls

- The net effect depends on the distribution of individual characteristics
 - In some circumstances the relaxed enforcement policy can increase welfare
Aggregate risk-taking

Welfare effect of relaxed enforcement with raised tax

- In all three cases
 \[E[\pi] = E[w] \]

- Project value distribution is
 - Symmetric: solid
 - “Skewed to the right”: dash
 - “Skewed to the left”: dot

- Relaxed enforcement policy rises welfare when
 - Tax rate is high
 - Unsuccessful project value is low

\[p = 0.5, f = 0.75, \{\rho, w\} \sim \text{uniform, independent} \]
Aggregate risk-taking

- Alternatively, one can consider reducing p (monitoring effort)
 - Need to incorporate cost of monitoring
 - If government chooses monitoring effort optimally, then any change will reduce welfare

- Pareto-improvement (Black & de Meza, 1997) vs aggregate welfare-improvement

- Possible extensions (borrowing)
Concluding remarks

- Theory needs to incorporate access to evasion and the formation of beliefs
- Occupational choice and social networks do this
- Occupational choice places attention on self-selection based on risk aversion
- The network allows beliefs that depart from objective probability to be sustained
- Audit policy can affect aggregate risk taking so needs to be evaluated from this perspective
- Next step: look at audit policy taking into account the network effects