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1. INTRODUCTION

This paper is concerned with ambiguity (also known as Knightian uncertainty). Ambiguity

refers to situations in which individuals have to make decisions when the relevant probabilities

are unknown. We believe that many important economic decisions are a§ected by ambiguity.

Our main results concern symmetric n-player games with aggregate externalities. We show

that ambiguity has di§erent e§ects depending on whether there are strategic complements or

substitutes. As an application, we show that ambiguity will increase voluntary donations to a

public good.

1.1 Background to the Public Goods Model

Conventional models of public goods imply that voluntary provision is virtually impossible in

large societies, due to free-rider problems. Despite this, in practice some public goods are

privately provided. For instance, in the UK the National Trust (a private charity) preserves

buildings and landscapes and receives a large proportion of its funds from voluntary donations.

In the USA, many non-commercial radio and television stations are similarly funded. (Other

researchers have also noted that experience does not appear to conÖrm the theory of free-riding,

see e.g. [24], p. 113.) Experimental research has similarly found signiÖcantly less free riding

than is predicted. It has been usual to explain this by postulating that subjects have altruistic

preferences, see e.g., [2] or [38]. In the present paper, we advance an alternative explanation

based on ambiguity.

If public goods are Önanced by voluntary donations, individuals are likely to be uncertain

about the contributions of others. In a partial equilibrium model, Austen-Smith [4] modelled

this as risk (additive uncertainty) and argued that risk-aversion (i.e. concave utility) would

increase contributions. However once general equilibrium e§ects are taken into account, risk-

aversion is not su¢cient to guarantee an increase in contributions. Public good provision will

only increase if a certain restriction on the third derivatives of utility, is satisÖed, see [22] and

[35]. It does not seem unfair to conclude that there is no general reason to expect risk-aversion

to increase voluntary contributions to a public good. In the present paper we show that if
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utility is a concave function of contributions, then uncertainty will indeed cause contributions

to increase, if doubts about the behaviour of others are modelled as ambiguity rather than risk.

1.2 Ambiguity

Ambiguity refers to situations where it is di¢cult to assign precise probabilities. It has often

been argued that this kind of uncertainty is important for economics. In this paper we shall use

a model of ambiguity due to Schmeidler [37], which represents individualsí beliefs by capacities

(non-additive subjective probabilities). He axiomatises preferences that can be represented

by maximising the expected value of utility with respect to a capacity. (The expectation is

expressed as a Choquet integral, [6].) This theory will henceforth be referred to as Choquet

Expected Utility (CEU). Under some plausible assumptions, this gives rise to preferences which

over-weight the worse outcomes of any given option.

We investigate the ináuence of ambiguity on the provision of public goods. In our model

each individual is uncertain about the contributions of others. Apart from this, the model is

deterministic. We believe that it is possible that there may be ambiguity, where public goods

are voluntarily provided. One reason is that economic models are an imperfect reáection of

reality. A motivation for ambiguity is that it models how decision-makers may behave to protect

themselves against errors arising from imperfections in the model. This argument is explained

in more detail in Mukerji [32].

We Önd that ambiguity can reduce free-riding by increasing the perceived marginal beneÖt

of contributions, moreover this e§ect can be quite large. However, the ambiguous equilibrium

will typically not be Pareto optimal since, each individual still fails to take into account beneÖts

going to others. The sub-optimality of conventional equilibria arose from precisely this failure.

It is only by accident that the perceived increase in marginal beneÖt due to ambiguity will

o§set this e§ect. One can show, by example, that it is possible to have too much or too little

of the public good with ambiguity.1 Note that this is qualitatively similar to the experimental

evidence, which Önds sub-optimal provision but signiÖcantly less free-riding than would be

predicted by conventional theories.

1.3 The Role of Returns to Scale

If there are su¢ciently strong increasing returns in the production of public goods, then our

conclusions are changed. In this case, ambiguity will discourage voluntary contributions. These

results are in contrast to the case of decreasing returns to scale, where we Önd that ambiguity
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can increase contributions. However the underlying logic of the two problems is similar. If

the production function is su¢ciently convex, ambiguity reduces the perceived contributions

of others. Since the marginal product of donations is falling, this reduces the marginal beneÖt

of contributing. If the payo§ function is concave in contributions, then lower perceived contri-

butions by others, increases the anticipated marginal beneÖt of contributing. Thus voluntary

provision is more likely to be successful, the greater the concavity of the production and utility

functions.

Alternatively, with increasing returns, there are coordination problems in public good

provision. A given individual may wish to make a donation if others do so but not otherwise.

Hence, there may be multiple equilibria. Ambiguity increases the coordination problem, since

individuals are less able to rely on the contributions of others. This is because, with increasing

marginal product, your donation will be more valuable if others also make donations. In

summary, ambiguity may reduce free-riding but will increase coordination problems. Provision

of public goods, may either increase or decrease depending upon the production and utility

functions.

We Önd it suggestive that, when organisations solicit voluntary contributions, they often

emphasise uncertainty concerning future provision and worst case outcomes. (How would you

feel if your favourite programme was not broadcast?) This accords well with theoretical models

of ambiguity. Material soliciting donations rarely mentions other possible motivations such as

altruism.

1.4 Strategic Complements and Substitutes

We derive our result on public goods from a more general model of symmetric games with

aggregate externalities, which we present in section 2. We investigate how ambiguity inter-

acts with the properties of strategic substitutes and complements in games. These concepts

were introduced in [5]. In a game with strategic complements (resp. substitutes), if your

opponent increases his/her act, the marginal beneÖt of increasing your own act will increase

(resp. decrease). Examples of games with strategic complements and substitutes are respec-

tively Bertrand and Cournot duopolies with linear demand and constant marginal cost. These

concepts have proved useful in industrial organisation. They have also been applied in other

areas of economics, most noticeably for instance to coordination problems in macroeconomics

see e.g. Cooper and John [7] and Cooper [8]. In section 5 we present some examples of appli-
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cations of our results, in particular to models from industrial organisation, bargaining theory

and macroeconomics.

Roughly, we Önd that ambiguity has opposite e§ects in games of strategic complements

and substitutes. However this is complicated by the possibility that strategic complementarity

may give rise to multiple equilibria. If there are positive externalities, ambiguity has the e§ect

of increasing the weight that a player places on the lowest act of his/her opponents. If there are

strategic complements (resp. substitutes), this reduces (resp. increases) the marginal beneÖt of

increasing the playerís own act and hence the equilibrium strategies. These e§ects are reversed

if there are negative externalities. If there are positive externalities, the Nash equilibrium can

be ine¢cient since players often have an incentive to use strategies below the Pareto optimal

level. In this case, for small changes, increasing ambiguity will move the equilibrium towards

the symmetric Pareto optimum, if there are strategic substitutes. However, in games with

strategic complements, ambiguity will move the equilibrium away from the Pareto optimum.

With strategic complements, it is possible that there might be multiple symmetric equi-

libria. If there are positive (resp. negative) externalities then higher (resp. lower) equilibria

are Pareto superior. In both cases we Önd that if there is enough ambiguity only the Pareto

inferior equilibrium will survive. As a rough guide, our results may be summarised by saying

that ambiguity is ìhelpfulî in games with strategic substitutes, but tends to have negative

e§ects when there are strategic complements.

We focus on symmetric equilibria since these are standard in the public goods literature,

(see e.g., [9], p. 161). This enables our results to be compared to those obtained without

ambiguity. The comparison between asymmetric and symmetric equilibria is orthogonal to

that between equilibria with and without ambiguity. Hence, we shall not investigate asymmetric

games or equilibria in this paper.

Organisation of the paper The next section introduces CEU preferences and applies them

to games. General results on comparative statics in games of aggregate externalities are derived

in section 3. We apply these results to public good provision in section 4. Other applications

are discussed in section 5 and section 6 concludes. The appendix contains the proofs of those

results which are not proved in the text.
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2. FRAMEWORK AND DEFINITIONS

2.1 Games

This paper is mainly concerned with comparative statics in symmetric games with aggregate

externalities, (deÖned below). Consider a symmetric game  = hN; (Si) (ui) : 1 6 i 6 ni with

Önite pure strategy sets Si for each player and payo§ functions ui (si; si). Player i has a Önite

strategy set which, for convenience, we identify with a subset of the integers, Si = f0; 1; :::;mg ;

for i = 1; :::; n: The notation, si; indicates a strategy combination for all players except i. The

space of all such strategy proÖles is denoted by Si. All players have the same utility function

u (si; si) ; for i = 1; :::; n: In this paper we shall only consider symmetric equilibria.

DEFINITION 2.1 A game, ; is a symmetric game with positive (resp. negative) aggregate
externalities if ui (si; si) = u (si; f (si)) ; for 1 6 i 6 n, where u is increasing (resp. decreas-
ing) in f and f : Si ! R is increasing in all arguments.

This is a separability assumption. It says that a player only cares about a one-dimensional

aggregate of his/her opponentsí strategies. Note that it does not restrict two player games,

hence our analysis can be applied to all such games. Our main example of such a game is that

of voluntary contributions to a public good. In this case, an individualís utility only depends on

his/her own consumption of the private good and the total contribution. In particular, utility

does not depend on how this total is distributed over others.

NOTATION 2.2 Since Si is Önite, we may enumerate the possible values of f; f0 < ::: < fM :
Since f is assumed to be increasing f0 = f (0; :::; 0) and fM = f (m; :::;m) :

NOTATION 2.3 Let (si; si) = u (si; si) u (si  1; si) ; i.e. (si; si) denotes the mar-
ginal beneÖt to individual i of increasing his/her action from si  1 to si when his/her oppo-
nentsí strategy proÖle is si: If f (si) = fr; we may write (si; fr) for (si; si) :

Note that this is the marginal beneÖt in the absence of ambiguity. We shall describe later

how marginal beneÖt is modiÖed by ambiguity.

DEFINITION 2.4 A game, , with aggregate externalities is a game of strategic substitutes
(resp. complements) if (si; fr) is a strictly decreasing (resp. increasing) function of r.2

The following assumption will be a maintained hypothesis throughout the paper, except

in section 4.3.
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ASSUMPTION 2.5 All games, , are assumed to be concave, by which we mean that for all
i; ui (si; si) is a strictly concave function of si.3

If there are decreasing returns to scale, the public goods game, discussed in section 4, is a

concave game with positive aggregate externalities and strategic substitutes. A Cournot game

with linear demand and constant marginal cost is a concave game with strategic substitutes

and negative externalities.

2.2 Ambiguity

Traditionally game theory assumes that players have expected utility preferences. We wish to

model the e§ects of ambiguity and hence, assume instead, that the players have CEU prefer-

ences. Beliefs about opponentsí behaviour are represented by capacities. A capacity assigns

non-additive weights, which represent beliefs, to subsets of Si. Formally, capacities are deÖned

as follows.

DEFINITION 2.6 A capacity on Si is a real-valued function  : P (Si)! R (where P (Si)
denotes the set of all subsets of Si), which satisÖes the following properties:

1. A  B ) (A) 6 (B); 2. (;) = 0;  (Si) = 1:

Below we deÖne a special class of capacities, which will be useful in our analysis.

DEFINITION 2.7 A capacity  is called simple if there exists an additive probability  on
Si and a real number  2 [0; 1] such that for all events E $ Si; (E) = (E).

Simple capacities are contractions of additive probabilities. The probability distribution 

can be interpreted as a playerís assessment of the relative likelihood of events and the parameter

; may be interpreted as the his/her conÖdence in this assessment.

DEFINITION 2.8 A capacity  is convex if (A) + (B) 6 (A [B) + (A \B).

If the capacity is convex, CEU preferences tend to overweight bad outcomes hence they

may be termed pessimistic or uncertainty-averse. For a convex capacity, it is possible that

(A) + (SinA) < 1, which implies that not all probability mass is allocated to a set and its

complement. This expression can be viewed as a measure of the missing probability mass. It

is useful to deÖne the following two measures.

DEFINITION 2.9 The maximal (resp. minimal) degree of ambiguity of capacity  is deÖned
by:

 () = 1min
AS

( (A) +  (:A)) (resp: () = 1max
AS

((A) + (:A)) :
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The maximal and minimal degrees of ambiguity of the simple capacity  = , deÖned

above, have the same value, 1 . These deÖnitions are adapted from [12]. They are justiÖed

epistemically in [32]. The degrees of ambiguity are measures of the deviation from additivity.

For an additive probability they are equal to zero, while for complete uncertainty they are equal

to one.4

We deÖne the support of a capacity to be the smallest set of opponentsí strategies with

a complement of capacity zero. For discussion of the deÖnition of support, see [13] and [34].

DEFINITION 2.10 The support of capacity  is a set E  Si; such that  (SinE) = 0 and
 (F ) > 0, for all F such that SinE $ F .

A possible objection to this deÖnition, is that states outside the support may not be

Savage-null. We believe that this argument is not valid because the concept of a Savage-null set

was formulated for expected utility and is not appropriate in the present context. In expected

utility if a state has positive probability, it always enters into the evaluation of an option, while

if it has zero probability it never enters into this evaluation. With CEU preferences, there is

in addition, a third category of states which may or may not have positive weight depending

on how they are ranked. In particular, some states only enter into the evaluation if they yield

especially bad outcomes. This third category of states can be interpreted as being ìinÖnitely

less likelyî than those which are always given positive weight, see [13] and [29]. The deÖnition

of support is quite stringent and only includes states which always enter into the evaluation.

In particular, it does not include states which only count when they yield bad outcomes.

Player i has beliefs about his/her opponentsí behaviour, represented by a capacity i on

Si. The expected payo§ from a strategy si, is expressed as a Choquet integral over Si. Such

preferences have been axiomatised by [21], [36] and [37]. We shall now deÖne the Choquet

integral.

NOTATION 2.11 Let  be a symmetric game with aggregate externalities we shall use Hr
(resp. Lr) to denote the event fsi 2 Si : f (si) > frg, (resp.fsi 2 Si : f (si) < frg).
Note that Hr = :Lr:
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DEFINITION 2.12 Let  be a symmetric game with positive (resp. negative) aggregate ex-
ternalities. The Choquet integral of ui (si; si) with respect to capacity i on Si is:

Vi (si) =

Z
ui (si; si) di = ui (si; fM ) i (HM ) +

M1X

r=0

ui (si; fr) [i (Hr) i (Hr+1)]

(resp. Vi (si) =

Z
ui (si; si) di = ui (si; f0) i (L0) +

MX

r=1

ui (si; fr) [i (Lr) i (Lr1)]):

2.3 Equilibrium

We shall use an equilibrium concept based on that of Dow and Werlang [13], which has been

extended in [17]. We assume that players do not randomise but play pure strategies.5 An

equilibrium is an n-tuple of capacities, which describes the beliefs of each player about how

his/her opponents will play. In equilibrium we require the support of player iís beliefs consist

of his/her opponentsí best responses. In the present paper we shall only consider symmetric

games and symmetric equilibria. Below we give a formal deÖnition of equilibrium.

DEFINITION 2.13 Let  be a symmetric game. A capacity  on Si is a symmetric equilib-
rium of ; if there exists a support, supp  such that for all i : 1 6 i 6 n; supp   R()n1,
where R() = argmaxsj2Sj

R
u (sj ; sj) d; is the best response correspondence of a player;

given beliefs .

In a symmetric equilibrium, the beliefs of all players are represented by the same ca-

pacity , whose support consists of strategies that are best responses for their opponents. In

equilibrium, a playerís evaluation of a particular strategy may, in part, depend on strategies

of his/her opponents which do not lie in the support. We interpret these as events a player

views as unlikely but which cannot be ruled out. This may reáect some doubts (s)he may have

about the rationality of the opponents or whether (s)he correctly understands the structure of

the game. Although in the present paper we only consider symmetric equilibria, it is relatively

easy to extend this solution concept to the non-symmetric case (see [13], [17], and [30]).

DEFINITION 2.14 Let  be a symmetric game and let ̂ be a symmetric equilibrium of ; if
supp ̂ contains a single strategy proÖle we say that it is pure, otherwise we say that it is mixed.

Since players choose pure strategies, we are not able to interpret a mixed equilibrium

as a randomisation. In a mixed equilibrium some player i say, will have two or more best

responses. The support of other playersí beliefs about iís play, will contain some or all of them.

Thus an equilibrium, where the support contains multiple strategy proÖles, is an equilibrium
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in beliefs rather than randomisations. We note that even without ambiguity, the concept of

equilibrium in beliefs has proved useful, see e.g., [3]. If, in addition, it is required that beliefs

are additive and the support consists of a single strategy proÖle, a symmetric equilibrium is

a Nash equilibrium.6 To analyse the e§ects of ambiguity it is helpful to deÖne the marginal

beneÖt under ambiguity.

DEFINITION 2.15 Marginal BeneÖt Suppose that player i has beliefs described by ca-
pacity  on Si. DeÖne

MB(si; ) =

Z
u (si; si) d(si)

Z
u (si  1; si) d(si):

We interpret MB(si; ) as player iís perceived marginal beneÖt from increasing his/her

strategy from si  1 to si; given that (s)he has beliefs represented by capacity . In general

this will be di§erent to the marginal beneÖt without ambiguity deÖned in Notation 2.3.

NOTATION 2.16 If 1 6 k 6 m, we shall use r (k) to denote that value of r which satisÖes
fr(k) = f (k; :::; k) :

The following Lemma Önds an expression for the marginal beneÖt with ambiguity.

LEMMA 2.1 Let  be a game with aggregate externalities, if ̂ is a symmetric equilibrium,

a. assume there are positive externalities and k̂ is the highest equilibrium strategy, then

MB(si; ̂) =
Pr(k̂)
r=0 (si; fr) [̂(Hr) ̂(Hr+1)] ;

b. assume there are negative externalities and k̂ is the lowest equilibrium strategy, 0 < k̂ <
m; then MB(si; ̂) =

PM
r=r(k̂)  (si; fr) [̂(Lr+1) ̂(Lr)] :

As can be seen, the form of marginal beneÖt is di§erent depending on whether there are

positive or negative externalities. This is because the Choquet integral depends on how a given

player ranks strategy proÖles, which might be played by his/her opponents. These rankings are

reversed depending on whether there are positive or negative externalities.

THEOREM 2.2 (Existence of Equilibrium) Let  be a symmetric game of aggregate ex-
ternalities, then for any degree of ambiguity , there exists a symmetric equilibrium with degree
of ambiguity .

Since the proof of the above theorem demonstrates the existence of an equilibrium in

simple capacities, the term ìdegree of ambiguityî in the statement of the theorem can be

interpreted as either the maximal or the minimal degree of ambiguity.
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The following Theorem characterises equilibrium with ambiguity. It is essentially a state-

ment of the usual marginal conditions for equilibrium. The only subtlety is that they are stated

in terms of the marginal beneÖt with ambiguity, as deÖned in DeÖnition 2.15.

THEOREM 2.3 (Characterisation of Equilibrium) Symmetric equilibria with ambiguity
of the game ; may be characterised as follows:

a. MB(m̂; ̂) > 0 > MB(m̂+ 1; ̂) is a necessary condition for ̂ to be an equilibrium, in
which all play strategy m̂; moreover if supp ̂ = fm̂g this condition is also su¢cient;

b. MB(1; ̂) 6 0 (resp. MB(m; ̂) > 0) is necessary for ̂ to be a symmetric equilibrium,
in which, all play strategy 0 (resp. m); moreover if supp ̂ = f0g (resp. supp ̂ = fmg)
this condition is also su¢cient;

c. MB(m̂+ 1; ̂) = 0 is a necessary condition for ̂ to be a symmetric equilibrium, in which
fm̂; m̂+1g is the set of best responses, moreover if supp ̂ = fm̂; m̂+ 1g this condition is
also su¢cient.

The main assumption needed for this result is that each playerís utility be concave in

his/her own strategy. It holds regardless of the nature of the strategic interactions. Indeed

it even holds in the absence of aggregate externalities. However these factors will a§ect the

functional form of MB and hence the equilibrium strategies.

3. COMPARATIVE STATICS

In this section we investigate the comparative statics of increasing ambiguity in games with

aggregate externalities.

DEFINITION 3.1 We say that capacity ̂ is more ambiguous than  if for all non-empty
A $ Si; ̂(A) + ̂(:A) < (A) + (:A).7

The strict inequality is needed to provide unambiguous comparative statics. Note that if

̂ is more uncertain than ; then both the maximal and minimal degrees of ambiguity of ̂ are

greater than those of .

3.1 Strategic Substitutes

In games with strategic substitutes and positive externalities, increasing ambiguity has the

e§ect of increasing the strategy played in symmetric equilibrium. There will be alternately

pure and mixed equilibria with successively higher strategies. The strategy will monotonically

increase from that without ambiguity to the equilibrium with complete uncertainty. These

conclusions follow from Proposition 3.1.
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PROPOSITION 3.1 Consider a game of positive (resp. negative) aggregate externalities with
strategic substitutes. Let  be a symmetric pure equilibrium in which k is the highest strategy
played and let ̂ be a symmetric equilibrium such that ̂ is more ambiguous than , if k̂ is the
highest (resp. lowest) strategy associated with ̂ then k̂ > k; (resp. k̂ 6 k).

The direction of comparative statics is reversed depending on whether there are positive

or negative externalities. With positive externalities, increasing ambiguity increases the weight

on lower strategies of the opponent. In a game of strategic substitutes this will increase the

marginal beneÖt of a given playerís own action and hence increase the equilibrium strategy.

If there are negative externalities, increasing ambiguity will increase the weight on the higher

valued actions of oneís opponent, such strategies, being the least favourable, in this case.

In both cases, starting from a position of no ambiguity, a small increase in ambiguity

will usually move the equilibrium in the direction of the Örst best symmetric optimum. In

games with positive (resp. negative) externalities Nash equilibrium strategies are above (resp.

below) the Pareto optimal levels. However we can construct examples, where starting from a

high initial level of ambiguity, further increases in ambiguity will cause the equilibrium to move

away from the Pareto optimum.8

3.2 Strategic Complements

With strategic complements, the comparative statics of ambiguity are complicated by the pos-

sibility of multiple equilibria. Assume that the lowest equilibrium is always played. Then,

with low ambiguity, equilibrium will coincide with that without ambiguity. If there are positive

externalities, as ambiguity increases, there will be alternately pure and mixed equilibria, in

which sucessively lower strategies will be played. The strategy played in symmetric equilibrium

will decline monotonically. In the limit, the equilibrium strategy will tend to the level with

complete uncertainty.

Assume instead that the highest equilibrium is played. As before the equilibrium strategy

will decline monotonically as ambiguity increases. At some point there is a discrete jump from

the highest to the lowest equilibrium. After which, the equilibrium strategy monotonically

declines until we reach the level with complete uncertainty. As usual, the comparative statics

are reversed if there are negative externalities. These conclusions follow from Propositions 3.2,

3.3 and 3.5.
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3.2.1 Comparative Statics

Here we consider comparative statics with strategic complements. We shall deal with the

possibility of multiple equilibria in a standard way, by investigating how the highest and lowest

equilibria change when ambiguity changes. When there are positive externalities, increasing

ambiguity will cause players to place greater weight on low strategies of their opponents. In the

presence of strategic complements, this lowers the marginal beneÖt of a playerís own action.

Hence more ambiguity decreases the equilibrium contribution level. The following result says

that with positive aggregate externalities, an increase in ambiguity causes both the highest and

lowest equilibrium strategies to decrease.

PROPOSITION 3.2 Let  be a game of positive aggregate externalities with strategic comple-
ments. Assume


0; 0


6 h; i : Let k0 (resp. k0) denote the lowest (resp. highest) equilib-

rium strategy when the minimal degree of ambiguity is 0 and the maximal degree of ambiguity
is 0: Let k (resp. k) denote the lowest (resp. highest) equilibrium strategy when the minimal
degree of ambiguity is  and the maximal degree of ambiguity is : Then k0 > k and k0 > k:

Next we show that with negative externalities the comparative statics are reversed.

PROPOSITION 3.3 Let  be a game of negative aggregate externalities with strategic com-
plements. Assume


0; 0


6 h; i : Let k0 (resp. k0) denote the lowest (resp. highest) equilib-

rium strategy when the minimal degree of ambiguity is 0 and the maximal degree of ambiguity
is 0: Let k (resp. k) denote the lowest (resp. highest) equilibrium strategy when the minimal
degree of ambiguity is  and the maximal degree of ambiguity is : Then k0 6 k and k0 6 k:

3.2.2 Strategic Complements and Multiple Equilibria

We now study a special class of games where strategic complementarities are su¢ciently strong

to generate multiple equilibria. This is characterised by the following assumption.

ASSUMPTION 3.2 (1; f0) < 0 and (m; fM ) > 0:

Assumption 3.2 implies there are always at least three Nash equilibria. The two possible

corner solutions are Nash equilibria and there is also an interior equilibrium.

PROPOSITION 3.4 Consider a game of aggregate externalities , which satisÖes Assumption
3.2. Without uncertainty, there are at least three symmetric Nash equilibria:

a. si = 0; for 1 6 i 6 n;
b. si = m; for 1 6 i 6 n;
c. a mixed equilibrium in which players randomise between k̂  1 and k̂; where k̂ satisÖes

k̂ = min

k : 


k; fr(k)


> 0; 0 6 k 6 m :

13



Games satisfying Assumption 3.2 are, in part, co-ordination games. A given player will

wish to play one of the extreme strategies, provided that (s)he believes that others act similarly.

Although there are multiple Nash equilibria, the following result shows that only the Pareto

inferior equilibrium, survives if there are su¢ciently high levels of ambiguity.

PROPOSITION 3.5 Consider a game of positive (resp. negative) aggregate externalities with
strategic complements. Under Assumption 3.2, there exists  such that if the minimal degree of
ambiguity is  >  , the equilibrium strategies are unique and all players play strategy 0, (resp.
m).

4. FREE RIDING UNDER UNCERTAINTY

In this section we apply our results to the voluntary provision of public goods. We have chosen

a relatively simple model. This enables us to focus on the e§ects of ambiguity.

4.1 The Model

There are n individuals and two goods, a public good Y and a private good X. Each has utility

function ui (y; xi) = w(y)dxi, where y denotes the level of public good provision and xi denotes

individual iís contribution to the public good (in terms of private good).9 Contributions may

only take integer values in the range 0 6 xi 6 m. Thus each player has a Önite set of pure

strategies. This assumption enables us to apply the results from section 3. Individuals are

assumed to have a su¢ciently large endowment that they are able to contribute m. The level

of public good provision is given by the production function, y = F (
Pn
i=1 xi).

NOTATION 4.1 DeÖne G : R! R by G(x) = w(F (x)): The function G; measures the beneÖt,
in utility terms, of contributions to the public good.

The public goods model is a game of aggregate externalities. To see this deÖne f : Si !

R by f (xi) =
P
j 6=i xj : There are positive externalities, since any given playerís utility is raised

when his/her opponents donate more.

4.2 Decreasing Returns to Scale

In this subsection we shall assume that there are decreasing returns to scale. The precise sense

of this is formalised in the following deÖnition.

ASSUMPTION 4.2 (Concavity) The function G is strictly concave and G(0) = 0:

14



Provided w and F are concave, G will be strictly concave if either there is diminishing

marginal utility of the public good (w is strictly concave) or there are decreasing returns to

scale (F is strictly concave). It is possible to allow for increasing returns to scale in production,

provided that these are o§set by diminishing marginal utility. When G is concave, the public

goods model is a concave game with strategic substitutes. Higher contributions of others

increase the supply of the public good, which reduces a given playerís own marginal utility

of the public good and hence the marginal beneÖt of his/her own contributions. Lemma 2.1

shows that, in equilibrium, the perceived marginal beneÖt is a weighted average of marginal

beneÖts at a number of contribution levels for the opponents between 0 and the equilibrium

level. When G is concave, this raises the perceived marginal beneÖt and hence the equilibrium

contributions compared to the model without ambiguity.

We shall now investigate comparative statics by changing ambiguity, while keeping other

factors constant. As the results in section 3 indicate, increases in ambiguity will increase

voluntary contributions to a public good. The following proposition establishes an upper bound

for the increase in contributions due to ambiguity.

PROPOSITION 4.1 Let m denote the lowest strategy played in symmetric Nash equilibrium
(without ambiguity) and let m0 denote an equilibrium contribution level with complete uncer-
tainty (maximin preferences). Then m0 > n m:

Consider a family of symmetric equilibria, which are continuously parametrised by a real

number , such that  = 0 corresponds to no ambiguity (additive beliefs) and  = 1 corresponds

to complete uncertainty and if ̂ >  then ̂ is more ambiguous than  . As  is increased

we get alternately pure and ìmixedî equilibria with successively higher levels of contributions.

Eventually there will be complete uncertainty i.e.  = 1. In this case all will contribute n m

units and the total contribution to the public good will be n2 m: If n is large, this illustrates

quite spectacularly how uncertainty can increase provision of a public good. The comparative

static properties of the model follow from Propositions 3.1 and 4.1.

The comparative statics of ambiguity are illustrated by Ögures 1 and 2, which assume

that there are two players. Each diagram shows the indi§erence curves of player 1, in x1 

x2 space. We illustrate the case where G is exponential. Figure 1 shows the case of no

ambiguity. As usual, the indi§erence curves are U-shaped and the reaction function of player

1 is downward sloping with slope -1. In Ögure 2 there is ambiguity. As ambiguity about player

15



x10

x2

Figure 1:  = 1

2ís contribution increases, it becomes less important to player 1. Thus a unit of player 1ís own

contribution becomes worth more to him/her in terms of player 2ís contributions, which implies

the indi§erence curves become steeper. For similar reasons, changes in player 2ís contribution

have smaller e§ects on player 1ís optimal contribution, hence player 1ís reaction function is

steeper when there is ambiguity. The intercepts of the reaction functions remain unchanged

while their slopes increase, which implies that equilibrium provision of the public good increases

with increases in ambiguity.
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x10

x2

Figure 2:  = 1
2

4.3 Increasing Returns to Scale

In this subsection we investigate how our results are modiÖed if there are increasing returns

in the production of public goods. It is possible that the function G will still be concave, if

increasing returns in production are o§set by diminishing marginal beneÖt of the public good. In

this case the previous results will still apply. If there are su¢ciently strong increasing returns to

scale to make G convex, ambiguity will reduce public good provision. With convex G, marginal

beneÖt is greater, the higher the current level of contributions. When there is ambiguity, any

given individual is less able to rely on the contributions of others. Hence ambiguity reduces the

anticipated marginal beneÖt of a contribution. Throughout this subsection we shall require the

following assumption to hold.

ASSUMPTION 4.3 (Convexity) G is strictly convex and G(0) = 0.

NOTATION 4.4 DeÖne r = G(r +m)G(r). Hence r is the extra beneÖt of contributing
m units rather than 0, given that the total contribution by other individuals is r. Assumption
4.3 implies that r is strictly increasing in r.

To set a benchmark, we shall characterise the Nash equilibria (without ambiguity) under

Assumption 4.3. There are three possible structures for the set of equilibria, depending on the

marginal cost of contributions, d. In the Örst, it is a dominant strategy to make the maximum

contribution, m. In the second there are multiple equilibria. Roughly an individual wishes

to contribute m if others do so, but would contribute 0 if (s)he expects others to contribute
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0. In this range, the public goods model is e§ectively a coordination game. There are two

pure strategy equilibria, one of which Pareto dominates the other. Finally, when the marginal

cost of contributing is high, it is a dominant strategy for all individuals to contribute 0. Recall

(n 1)m, is the largest amount which all individuals, other than j; could contribute.

THEOREM 4.2 Characterisation of equilibrium. If there are increasing returns to
scale (i.e. Assumption 4.3 is satisÖed), symmetric equilibrium without ambiguity may be char-
acterised as follows:

a. if (n1)m > 0 > m
d; the only equilibrium contribution level is m, which is a dominant

strategy;

b. if (n1)m > md > 0, there exist two pure strategy equilibria, one in which all contribute
0 and one in which all contribute m;10

c. if md > (n1)m > 0, the only equilibrium contribution level is 0, which is a dominant
strategy.

REMARK 4.1 Since the individual is deciding whether to contribute m or 0 the marginal
cost d of contributing is not relevant. What is relevant is the total cost of contributing which
is equal to md.

Since CEU preferences respect dominance, the two dominant strategy equilibria are un-

a§ected by ambiguity. Hence ambiguity can only have an e§ect when (n1)m > md > 0:

The following proposition shows that, in almost all cases, where both equilibria exist without

ambiguity, only the Pareto inferior equilibrium (without ambiguity) will arise if there is enough

ambiguity. This is broadly in line with the experimental results reported in [25].

PROPOSITION 4.3 Assume M > md > 0; then there exists  such that if the minimal
degree of ambiguity is  > , the equilibrium strategies are unique and involve all individuals
making zero contribution to the public good.

Thus if there are su¢ciently strong increasing returns to scale, ambiguity will reduce

voluntary donations. When G is concave, increases in ambiguity cause gradual increases in

contribution levels. In contrast with convex G, increases in ambiguity either have no e§ect or

cause a catastrophic collapse in contributions.

4.4 Experimental Evidence

There is a large experimental literature on public goods, for surveys see ( [11], Ch. 6) and [28].

The following stylised facts emerge from this research.

18



1. There is no signiÖcant evidence of free-riding in single shot games.

2. When subjects play a repeated game, provision of the public good ìdecaysî toward the
free-riding level with each repetition.

3. Experienced subjects free-ride more than inexperienced subjects, [24].

4. Unexpectedly changing the rules of the experiment decreases free riding. (This is known
as the restart e§ect, [1].)

5. Face to face communication reduces free-riding, [23].

Intuitively one would expect there to be more ambiguity in one-shot games, the Örst

round of repeated games, with less experienced subjects or after unexpected events. Thus

these results seems compatible with our theoretical conclusions. Only the result that face to

face communication reduces free-riding fails to support our theory. While communication is

likely to reduce uncertainty, it may have other e§ects such as establishing a focal point, creating

feelings of loyalty etc. Hence we do not believe this evidence creates serious problems for our

theory, since the reduction in uncertainty is confounded with other factors. The main previous

explanation of the observed low level of free riding is altruism. (See, e.g., [2].) However altruism

does not explain why repetition decreases free-riding nor the restart e§ect.

Andreoni [1], investigates the e§ect of unexpectedly restarting an experiment. Subjects

were told that they would play ten rounds of a public goods game. After the tenth round the

subjects were told that they would play an additional ten rounds of the same game. The results

were that during the Örst ten rounds, free-riding slowly increased as in other experiments. The

Örst round after restarting had a low level of free-riding similar to Örst round of the initial

experiment. These results appear to be di¢cult to explain by conventional models of learning,

since such models would predict that the Örst round after the restart would be like the 11th

round of a longer experiment. It is possible that the unexpected restart created ambiguity. In

which case, the experiment would be compatible with our model.11 Andreoni argues that his

results can only be explained by ìtheories of non-standard behaviourî. Although he does not

explicitly consider Knightian uncertainty, we believe the present paper is in the spirit of this

suggestion.

5. FURTHER APPLICATIONS

This section suggests some other applications of the results of section 3. In particular we con-

sider Cournot oligopoly, macroeconomic coordination and bargaining. Additional applications

to industrial organisation and team production can be found in a companion paper, [16].
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5.1 Oligopoly Models

Cournot oligopoly is a game with aggregate externalities. Consider a model with n Örms

1 6 i 6 n: Let qi and ci (qi) denote respectively the quantity and the cost of Örm i: Suppose that

the inverse demand curve is given by P (q) ; where q denotes the total quantity supplied. Then

the proÖts of Örm i are given by i = P

qi +

P
j 6=i qj


qici (qi) : If we deÖne f (qi) =

P
j 6=i qj ;

this satisÖes the requirements of a game of aggregate externalities. Our results imply that total

output will be lower in a Cournot oligopoly when there is Knightian uncertainty. This will raise

(ex post) proÖts. However the total of consumer and producer surplus will fall with increases

in uncertainty. Hence the e§ects of ambiguity could be misinterpreted as collusive behaviour

by the Örms.

5.2 Bargaining

We consider a model of bargaining adapted from [33]. There are n individuals 1 6 i 6 n;

who bargain over a surplus, S; by each claiming a share si for himself/herself. The rules of

bargaining are as follows:

 Each player has a strategy space, Si; which consists of the integers between 1 and tn+1;
where t = n; for some positive integer : We interpret choosing si 2 Si; as claiming a
portion siS

t of the total surplus.

 If the shares claimed by the players are feasible,
Pn
j=1

sj
t 6 1; then they will be imple-

mented.

 If the shares demanded exceed 1, the payo§ is 0:

Clearly, this is a symmetric game with negative aggregate externalities, since for a given

player, only the sum of the opponentsí claims matter and a higher demand of the opponents

means a lower payo§. Claims are also strategic substitutes because, for low claims of the

opponents, the marginal payo§ of an extra claim equals this marginal claim, but falls to zero

when the claims of others exceed the available surplus. Hence Proposition 3.1 applies.

This game has multiple Nash equilibria. Any set of claims which exactly exhaust the

available surplus forms a Nash equilibrium. Since the total surplus is exhausted, the Nash

equilibria are e¢cient. There is a unique symmetric Nash equilibrium, in which all individuals

receive fraction 1
n of the total surplus. This game has the structure of a coordination game

with conáicting interests, similar to the well-known battles of the sexes game.

With su¢cient ambiguity, this picture will change. If a player asks for St ; (s)he will receive

this regardless of the claims of other players. This gives a higher payo§ than if the claims are

inconsistent. Being uncertain about his/her opponentís claims, a player may well opt for a low
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claim in order to ensure a positive payo§. If all players reason in this way, they will all bid low

and secure their bid. The outcome, however, would be ine¢cient. Ine¢cient outcomes are, in

fact, commonly observed in bargaining experiments.

For example, consider the case of two players who share a surplus of S = 1; with claims

si 2 f34 ;
1
2 ;
1
4g; S = 1: In this case, the game can be represented in matrix form as follows:

Player 2

Player 1

3
4

1
2

1
4

3
4 0; 0 0; 0 3

4 ;
1
4

1
2 0; 0 1

2 ;
1
2

1
2 ;
1
4

1
4

1
4 ;
3
4

1
4 ;
1
2

1
4 ;
1
4

In a symmetric pure equilibrium with beliefs of a typical player represented by capacity

̂; the possible strategies receive the following (Choquet) expected pay-o§s: V1

3
4


= 3

4 ̂

1
4


;

V1

1
2


= 1

2 ̂

1
2 ;
1
4


and V1


1
4


= 1

4 : There are two possible symmetric pure equilibria

1
2 ;
1
2


and


1
4 ;
1
4


:

If

1
2 ;
1
2


is a symmetric pure equilibrium with beliefs of a typical player represented by

capacity ̂, then ̂

1
4


= 0, which implies V1


3
4


= 0. For 12 to be a best response it is necessary

that ̂

1
2 ;
1
4


> 1

2 : A su¢cient condition for this is that the maximal degree of ambiguity be at

most 12 :

Now suppose

1
4 ;
1
4


is a symmetric pure equilibrium with beliefs of a typical player

represented by capacity ~. For 1
4 to be a best response it is necessary that ~


1
2 ;
1
4


6 1

2 and

~

1
4


6 1

3 : A su¢cient condition for this is that the minimal degree of ambiguity be at least
2
3 :

Thus increases in ambiguity reduce the equilibrium actions, as predicted by our general

results. This is example is interesting. In the Nash equilibrium there are the e¢cient level of

negative externalities. Consequently in equilibria with high minimal degree of ambiguity there

are too few negative externalities.

5.3 Macroeconomic Coordination Games

There is a large literature on strategic complementarity in macroeconomics, for a survey see

Cooper [8]. Our analysis could be used to study the e§ects of ambiguity in many of these models.

As an example we consider a model of social increasing returns to scale based on [8], p. 43. There

are n identical individuals. Individual i chooses an e§ort level ei 2 [0; e] to maximise his/her

utility function ui = ci 
e2i
2 : Each individual produces according to the production function
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ci = ei f
P

j 6=i ej


; where f is an increasing function. Thus ui (ei; ei) = ei f

P
j 6=i ej


 e2i

2 :

Any given individual i produces under constant returns to scale but due to externalities, there

are increasing returns to scale for society as a whole.

This is a game of aggregate externalities, since utility only depends on the total e§ort

exerted by others: Clearly the externalities are positive. One can easily check that ui (ei; ei)

is a concave function of ei; hence this model is a concave game. It is a game of strategic

complements, since higher e§ort by any other individual will increase the marginal product of

individual i: Thus our results suggest that increases in ambiguity will decease e§ort and output.

It is possible to construct examples of functions f , which give rise to multiple equilibria.

In this case, if there is su¢ciently high ambiguity, only the lowest equilibrium will survive.12

Hence it is possible that a small increase in ambiguity could cause a collapse in economic

activity. This process may not be reversible. If starting at a low level equilibrium there is

an increase in conÖdence, the low level equilibrium will continue to exist, hence the economy

does not necessarily jump to a higher level of activity, even if there are multiple equilibria with

the new level of ambiguity. In practice sudden collapses of business conÖdence occasionally

occur and are often blamed for economic recessions. In contrast business conÖdence and hence

economic booms tend to build up gradually over time. Our model is compatible with these

stylised facts.

One could also give a development economics interpretation to this model, in which the

players are interpreted as sectors of the economy. It is not unreasonable to postulate that there

might be strategic complementarity between investment in di§erent sectors. Thus investment

in transport and banking may increase the incentive to invest in industry. The model raises

the possibility that there may be multiple equilibria with di§erent levels of economic activity.

If there is a low level of conÖdence in economic institutions then the country may be prevented

from reaching the highest equilibrium. In this situation, it would be desirable if the government

or the international community could adopt policies which increase conÖdence. Conversely

policies which could create uncertainty or undermine conÖdence should be avoided.

6. CONCLUSION

In this conclusion we would like to comment on the relation between Knightian uncertainty

and the technique of introducing ìirrational typesî in a game of incomplete information. At a
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theoretical level both techniques have the e§ect of making the equilibrium depend on pay-o§s,

which would not be achieved in the Nash equilibrium of the underlying game. Some phenomena

can be explained by either approach, for instance cooperation in the Önitely repeated prisonerís

dilemma, (see [13] and [27]).

For many applications we prefer models of Knightian uncertainty, since properties of non-

additive beliefs can, in principle, be tested experimentally. It is not clear to us how one can test

which kind of irrational types an individual believes possible. The irrational types approach

seems to have di¢culty explaining experimental evidence. In an experiment, to hypothesise that

subjects believe their opponent may have an irrational type, is close to saying that they believe

they are playing a di§erent game to the one the experimenter intended. It seems to weaken

the motivation for running controlled experiments if to explain the data, one hypothesises that

the subjects do not believe the control. No such di¢culties arise, if we explain experimental

evidence by the hypothesis that, subjectís beliefs can be represented by a convex capacity.

As demonstrated in this paper, in games with Knightian uncertainty, the direction of

deviation from Nash equilibrium is determined endogenously by the nature of strategic inter-

action. In particular it depends on whether a game has strategic complements or substitutes

and whether there are positive or negative externalities. These predictions can, in principle, be

experimentally tested. In contrast, the irrational types approach seems to make few testable

predictions.

There has been much research on non-expected utility theories. For these models to be-

come widely accepted it is important to develop economic applications of them. Many appli-

cations have been based on the fact that non-expected utility models can, in some sense, be

more risk averse then expected utility preferences. (See the distinction between Örst order and

second order risk aversion in [39].) This paper has presented a new e§ect. CEU preferences

exhibit unambiguous comparative statics in games with strategic substitutes or complements.

As indicated by the examples in this paper, we believe this will have a number of economic

applications.

Appendix A. Proofs

This appendix contains the proofs of those results not proved in the main text. Where relevant,

we shall only give proofs for games with negative aggregate externalities. The corresponding
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results for games with positive aggregate externalities may be established by similar arguments.

The following lemma implies that, in the equilibrium of a concave game, either a single strategy

is played or two adjacent strategies are played.

LEMMA A.1 Let  be a game with positive or negative aggregate externalities. Consider a
given player, i say. Let m1 > m2 > m3; be three possible strategies for player i: Suppose that
with beliefs over Si given by ;m1 is indi§erent to m3, then m2 is strictly preferred to m1.

Proof. Playing strategy mi yields (Choquet) expected utility: V (mi) =
R
u (mi; si) d(si):

There exists  such that m2 = m1 + (1 )m3. Since m1 and m3 are indi§erent: V (m1) =

V (m1) + (1 )V (m3) = 
R
u (m1; si) d(si) + (1 )

R
u (m3; si) d(si)

=
R
[u (m1; si) + (1 )u (m3; si)] d(si)

13<
R
u (m2; si) d(si) = V (m2), by strict

concavity of G. The result follows.

NOTATION A.1 For a given strategy si 2 Si; deÖne mi (si) to be the smallest element of
argmin fui (si; si) : si 2 Sig i.e. mi (si) is the worst strategy which iís opponents could
adopt when (s)he chooses strategy si.

LEMMA A.2 Let  =  be a simple capacity on Si, where  is an additive probability on
Si and 0 <  6 1, then

a. the support of  is unique and supp  = supp ;

b.
R
u(si; si)d(si) = Eu(si; si) + (1 )u(si;m (si)).

Proof. For part a see [17] Lemma 3.3 and for part b see [15], Proposition 3.1.

LEMMA A.3 Let  be a symmetric game with aggregate externalities; suppose that ̂ is a
symmetric equilibrium:

a. suppose that the equilibrium strategy is k̂; then, ̂ (Lr) = 0 if fr 6 f

k̂; :::; k̂


, ̂ (Hr) = 0

if fr > f

k̂; :::; k̂


;

b. suppose that the equilibrium strategies are k̂; k̂ + 1; then, ̂ (Lr) = 0 if fr 6 f

k̂; :::; k̂


,

̂ (Hr) = 0 if fr > f

k̂ + 1; :::; k̂ + 1


.

Proof. The result holds trivially if ̂ (A) = 0; for all A $ Si. Otherwise for any event A  Si,

̂ (A) > 0; if and only if hk̂; :::; k̂i 2 A. The result follows by noting that hk̂; :::; k̂i 2 Hr if and

only if fr 6 f(k̂; :::; k̂) and k̂ 2 Lr only if fr > f(k̂; :::; k̂). The proof of part (b) is similar.

:
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Proof of Lemma 2.1. Consider player i. Then
R
u (si; si) d(si) = u (si; f0)  (L1)+

PM
r=1 u (si; fr) [(Lr+1) (Lr)]. Similarly

R
u (si  1; si) d(si) = u (si  1; f0)  (L1)

+
PM
r=1 u (si  1; fr) [(Lr+1) (Lr)] : By taking the di§erence of these two expressions, we

obtain

MB(si; ) =  (si; f0)  (L1) +

MX

r=1

(si; fr) [(Lr+1) (Lr)] : (A-1)

The result follows from equation ((A-1)) and Lemma A.3.

Proof of Theorem 2.2 DeÖne i (s1; :::; sn) = (1 )ui (si; si) + ui (si;mi (si)), for

1 6 i 6 n. Consider the game (without ambiguity) 0; where the players have strategy sets

f0; 1; :::;mg and player iís utility function is i. This game has a symmetric Nash equilibrium,

in which players independently choose a strategy according to the probability distribution  on

f0; 1; :::;mg ; (see [31] p. 115). This induces a product distribution  on Si:

We assert that the simple capacity ; deÖned by (B) = (1 )(B), B $ Si; (Si) =

1; is a symmetric equilibrium of . Suppose that strategy proÖle s = hs1; :::; s

ni 2 Si is in

the support of ; then by Lemma A.2, (s) > 0, which implies that 

sj


> 0, for j 6= i.

Thus strategy proÖle s is given positive probability in the Nash equilibrium of the game 0.

This implies, Ej

sj ; s


j


> Ej


sj ; s


j


, for 0 6 sj 6 m and j 6= i. By Lemma A.2,

this is equivalent to
R
ui

si ; s


i

d(si) >

R
ui

si; s


i

d(si), which establishes that s


j is a

best response for j; given that his/her beliefs can be represented by capacity . It follows that

 is a symmetric equilibrium with uncertainty.

Proof of Theorem 2.3 Part (a) Consider player 1. Let ̂ be a symmetric equilib-

rium which satisÖes (a). The expected utilities from strategies m̂  1; m̂ and m̂ + 1 units

are respectively,
R
u(m̂  1; si)d̂(si),

R
u(m̂; si)d̂(si) and

R
u(m̂ + 1; si)d̂(si). Thus

MB(m̂; ̂) > 0 > MB(m̂+ 1; ̂) is a necessary condition for contributing m̂ units to be a best

response. Concavity of u implies that this condition is also su¢cient. Hence, if this condition

is satisÖed and supp (̂) = fm̂g ; ̂ is a symmetric equilibrium in which all contribute m̂. Part

(b) of the theorem follows by similar reasoning.

Part (c) For m̂ and m̂ + 1 to both be best responses the individual must be indi§er-

ent between them. Hence
R
u(m̂; si)d̂(si) =

R
u(m̂ + 1; si)d̂(si). Rearranging we Önd

MB(m̂+ 1; ̂) = 0. Concavity implies that this condition is also su¢cient for m̂; m̂ + 1 to be

best responses. The result follows.

25



Proof of Proposition 3.1 Suppose that the result is false, then k̂ > k: If r = M + 1, then

1 =  (Lr) > ̂ (Lr) : If r

k

< r 6 M , then by Lemma A.3,  (Hr) = 0, hence  (Lr) =

 (Lr) +  (Hr) > ̂ (Lr) + ̂ (Hr) > ̂ (Lr) ; where the Örst inequality follows from the fact

that ̂ is more uncertain than . If 1 6 r 6 r(k̂  1), then ̂ (Lr) = 0; by Lemma A.3,

hence  (Lr) > ̂ (Lr) in this case. The assumption k̂ > k; implies that k̂  1 > k: Hence

 (Lr) > ̂ (Lr) for all r : 0 6 r 6M + 1; with strict inequality if r

k

6 r 6M:

Note that MB(; k) is a weighted average of the ís. Since
Pm

r=t [(Lr) (Lr1)] =

1   (Lt1) 6 1  ̂ (Lt1) =
Pm

r=t [̂(Lr) ̂(Lr1)] for 0 < t 6 M , (with some strict

inequalities) the weights in the expression for MB(; k) Örst order stochastically dominate

those in the expression for MB(̂; k). Because (si; fr) is a strictly decreasing function of si,

it follows that MB(; k) < MB(̂; k); for 0 6 k 6 m:

By Theorem 2.3, 0 > MB

k̂ + 1; ̂


> MB


k; ̂


> MB


k; 


. However, by Theorem 2.3,

a necessary condition for k (resp. k; k+1) to be an equilibrium contribution level (resp. levels)

with beliefs ; is MB

k; 


> 0, (resp. MB


k; 


= MB


k + 1; 


= 0). This contradiction

establishes the result.

LEMMA A.4 Let  be a game of negative aggregate externalities and strategic complements.
Suppose that (1 )


m; fr( m)


+( m; fM ) > 0; m 6= m; then there exists k > m such that

there is a pure symmetric equilibrium in simple capacities with degree of ambiguity  in which
strategy k is played.

Proof. Suppose Örst that (1 )

k; fr(k)


+ (k; fM ) > 0; for all k > m; then by

Theorem 2.3, there is a corner equilibrium in simple capacities with degree of ambiguity ;

in which all play m. Otherwise, let ~k + 1 be the Örst integer greater than m such that,

(1 )

~k + 1; fr(~k+1)


+ 


~k + 1; fM


< 0: By strategic complementarity this implies,

(1 )

~k + 1; fr(~k)


+ 


~k + 1; fM


< 0: (A-2)

Then; by deÖnition of ~k;

(1 )

~k; fr(~k)


+ 


~k; fM


> 0: (A-3)

Equations (A-2) and (A-3) imply the existence of a pure equilibrium in which all play ~k and

beliefs are represented by simple capacities with degree of ambiguity . Clearly ~k > m:
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LEMMA A.5 Let  be a game of negative aggregate externalities with strategic complements
and let ~k denote the highest strategy played in a symmetric equilibrium with maximal degree
of ambiguity at most : Then there exists an equilibrium in simple capacities with degree of
ambiguity ; in which ~k is an equilibrium strategy.

Proof. Let ~ be a symmetric equilibrium with maximal degree of ambiguity at most ; in

which strategy ~k is played. By deÖnition ~k is the highest strategy played in this equilib-

rium. By Lemma 2.1, MB(si; ~) =
PM
r=r(k̂)  (si; fr) [~(Lr+1) ~(Lr)] : Since there are strate-

gic complements, (k; fM ) > (k; fr) ; for r

~k

6 r < M: Hence ~(Lr(~k)+1)


k; fr(~k)


+


1 ~(Lr(~k)+1)


(k; fM ) > MB(k; ~): Since  (~) 6 ; ~(Lr(~k)+1) = ~(Lr(~k)+1)+~(Hr(~k)+1) >

1:Hence, (1 )

k; fr(k)


+(k; fM ) > MB


~k; ~


> 0: This equation implies by Lemma

A.4, that there is an equilibrium in simple capacities with degree of ambiguity  in which the

equilibrium strategy is k̂ > ~k: Since ~k is the highest equilibrium strategy when the minimal

degree of ambiguity is ; we must have k̂ = ~k: The result follows.

Proof of Proposition 3.3 By Lemma A.4, since k is the highest equilibrium strategy

when the maximal degree of ambiguity is ; (1 )

k; fr(k)


+(k; fM ) < 0; for k+1 6

k 6 m: Hence

1 0




k; fr(k)


+ 0(k; fM ) < 0; for k + 1 6 k 6 m; which implies

there is no equilibrium in simple capacities with degree of ambiguity 0 in which a strategy

k + 1 6 k 6 m; is played. By Lemma A.5, there is no equilibrium with maximal degree of

ambiguity 0 in which a strategy k; k + 1 6 k 6 m; is played. Hence k0 6 k: By similar

reasoning we may show k0 6 k:

NOTATION A.2 DeÖne

z
(n1)
j 

 
n1
j


j(1 )n1j ; (0 6 j 6 n 1);
0; (n 6 j):

Thus z(n1)j = Pr(Zn1 = j) , where Zn1 is a random variable with the Binomial distribution,
parameters n 1 and .

Proof of Proposition 3.4 Assumption 3.2 directly implies that cases a and b are Nash

equilibria. Next we demonstrate the existence of the equilibrium of part c.

Consider a given player i; say. Assume that iís opponents are independently randomising

between k̂ and k̂  1; playing strategy k̂ with probability : Since  is symmetric, the value of

f only depends on the number of individuals who play k̂: Let f j denote the value of f when j

individuals play k̂ and n j individuals play k̂ 1: If i plays strategy k̂ 1 (resp. k̂) (s)he will

receive,
Pn1
j=0 z

n1
j u


k̂  1; f j


; (resp.

Pn1
j=0 z

n1
j u


k̂; f j


). In a mixed equilibrium these
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must be equal, hence,
n1X

j=0

zn1j 

k̂; f j


= 0: (A-4)

If  = 0; the expression in equation (A-4) is 

k̂; f0


= 


k̂; fr(k̂1)


: By construction



k̂  1; fr(k̂1)


6 0: If  = 1; then the expression in equation (A-4) is 


k̂; fn1


=



k̂; fr(k̂)


> 0. Therefore by the intermediate value theorem, there exists ̂ such that equa-

tion (A-4) is satisÖed. Since  is a concave game, this is a su¢cient condition for existence of

a mixed equilibrium.

Proof of Proposition 3.5 Let  be a symmetric equilibrium with minimal degree of am-

biguity . Consider a given individual; if (s)he plays strategy m (resp. m) (s)he will receive

utility u (m; f0)  (L1) +
PM
r=1 u (m; fr) [(Lr+1) (Lr)] (resp: u (m

; f0)  (L1)+

PM
r=1 u (m

; fr) [(Lr+1) (Lr)]): Hence the extra utility j gets from playing strategy m

rather than m; is ~0 (L1) +
PM
r=1

~r [(Lr+1) (Lr)] ; where ~r = u (m; fr)  u (m; fr) :

By strategic complementarity, ~r is increasing in r: Hence (1 ) ~0 + ~M 6 ~0 (L1) +

PM
r=1

~r [(Lr+1) (Lr)]. By Assumption 3.2, (m; fM ) > 0; which together with con-

cavity of u implies ~M > 0: Therefore, for  su¢ciently large, (1 ) ~0 + ~M > 0, which

implies that m is not a best response. It follows that for large minimal degrees of ambiguity,

the only equilibrium is where all individuals play strategy m.

Proof of Proposition 4.1 Since m is a symmetric Nash equilibrium contribution level,

it is a best response for player i: A necessary condition for this is ( m; mi) > d; where mi

denotes the proÖle where all of iís opponents contribute m: Note that for the public goods model,

(x; y) =  (x+ y; 0) : Hence (n m; 0) > d: The equilibrium under complete uncertainty, m0

satisÖes (m0; 0) > d > (m0 + 1; 0). By concavity, (x; 0) is a decreasing function of x,

which implies m0 > n m:

Proof of Theorem 4.2 First note that since G is convex, any given individualís best

response to a given level of contribution r by the other players is either 0 or m. Hence, for

any set of beliefs about the opponentsí behaviour 0 or m will be optimal.

Case a. Consider a given individual i, say. By convexity, it is su¢cient to show that

0 is not a best response. In a symmetric equilibrium, there will be some number  such

that any given individual plays m with probability  and 0 with probability 1  . Then
Pn1
k=0 z

(n1)
k G (km +m) md is the beneÖt to i of contributing m.14 The beneÖt of con-
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tributing 0 is given by:
Pn1
k=0 z

(n1)
k G (km). The di§erence between the utility from contribut-

ing m and that from contributing 0 is given by:
Pn1
k=0 z

(n1)
k kmmd > 0md > 0, where

the Örst inequality follows from the fact that the ís are increasing and the second is true by

assumption. It follows that contributing m gives strictly higher utility than 0 and hence m

is the unique best response.

Case b. Suppose now, that i believes that all other individuals will contribute m. Then if

i contributes m; (s)he will obtain utility G(nm) md. If i contributes 0, (s)he will obtain

utility G((n 1)m). By assumption (n1)m = G(nm)G((n 1)m) > md, hence a best

response for i is to contribute m. Similarly we may show that if all others contribute 0, it is

a best response for i also to contribute 0.

The proof for case (c) is similar to case (a).

Proof of Proposition 4.3 By Lemma 2.1, MB(si; ̂) =
Pr(k̂)
r=0 (si; fr) [̂(Hr) ̂(Hr+1)] :

Note that the proof of Lemma 2.1 does not use concavity hence it is legitimate to apply it in the

present context. Let  be a symmetric equilibrium under uncertainty with degree of ambiguity

. Let xR = (n 1)m; the largest possible contribution of individuals other than i: DeÖne

~Hr =
n
xi :

P
j 6=i xj > r

o
: Consider a given individual j, if (s)he contributes 0 (resp. m) units

to the public good, (s)he will receive utility G (R) ( ~HR) +
PR1
r=0 G (r)

h
( ~Hr) ( ~Hr+1)

i
;

(resp. (G (R+m)md) ( ~HR) +
PM1
r=0 (G (r +m)md)

h
( ~Hr) ( ~Hr+1)

i
): Hence the ex-

tra utility j gets from contributingm rather than 0; is R( ~HR)+
PR1
r=0 r

h
( ~Hr) ( ~Hr+1)

i


md; where r = G (r +m)G (r) : Since G is convex, r is increasing in r; hence (1 ) R +

0 > R( ~HR) +
PR1
r=0 r

h
( ~Hr) ( ~Hr+1)

i
: By assumption, md > 0 ; which together

with convexity of G implies 0 < md: Therefore, for  su¢ciently large, (1 ) M +0 < md,

which implies that m is not a best response. It follows that for large degrees of ambiguity, the

only equilibrium is where all individuals contribute 0.
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1 It is possible to construct examples when the production function for public goods is exponential, in which public
good provision with ambiguity is above the Pareto optimal level.

2We could obtain similar results if the word strictly were omitted from this deÖnition. We have not reported these to
save space. Note that our deÖnition of strategic complements is slightly stronger than the usual one. The usual deÖnition
requires that increasing your own strategy increases the marginal beneÖt to an opponent of increasing his/her strategy.
We require that, in addition, there is a monotonic relationship between your strategy and your opponentsí total beneÖt.
The reason for this being that the marginal beneÖt under ambiguity (see DeÖnition 2.15) depends both on the conventional
marginal beneÖt and on how a player ranks his/her opponentsí actions. Thus, by assuming aggregate externalities, we
ensure that playing a higher strategy has an unambiguous e§ect on the marginal incentives of oneís opponentsí.

3We shall assume that all games satisfy concavity because this allows us to state our results in a cleaner way. Similar
results could be obtained if pay-o§ functions were weakly concave.

4Epstein [18] has proposed an alternative measure of uncertainty-aversion. We do not have space in the present paper
to present a detailed comparison of the two. We would like to note that, for pure equilibria, which we believe to be the
more interesting case, we could obtain similar results using Epsteinís measure of uncertainty-aversion. Note that [20] and
[26] have proposed formal measures of uncertainty-aversion more in the spirit of the present paper.

5 In [14], we show that individuals with CEU preferences will not have a strict preference for randomisation. This
provides a justiÖcation for these assumptions.

6A symmetric equilibrium is a Nash equilibrium, if beliefs are additive and independent, regardless of the size of
the support. We have not required that playersí beliefs be independent, since at present there are unresolved questions
concerning the deÖnition of independence for capacities, see [17] and [19].

7A similar deÖnition has been proposed by Marinacci [30], who built on earlier work by Dow and Werlang [12].

8An example of this would be the public goods model with exponential utility.

9There are a number of possible extensions to this basic model which one might wish to consider. In particular it has
been suggested that the assumptions that utility is linear in the private good and separable between the two goods should
be relaxed. In the more general model in section 3, neither of these assumptions is made. As can be seen, most of our
conclusions remain valid in that model.

10There is also a mixed strategy equilibrium in which all individuals randomise between contributing m and 0.

11 In a subsequent experiment Croson [10] has conÖrmed the restart e§ect.

12This does not follow directly from the results of section 3, since this model does not satisfy Assumption 3.2, however
it can be established by similar arguments.

13This step is valid since, if there are positive or negative aggregate externalities u (m1; si) and u (m3; si) are
comonotonic.

14 See Notation A.2:
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Abstract: We examine the e§ect of ambiguity in symmetric games with aggregate external-
ities. We Önd that ambiguity will increase/decrease the equilibrium strategy in games with
strategic complements/substitutes and positive externalities. These e§ects are reversed in
games with negative externalities. We consider some economic applications of these results
to Cournot oligopoly, bargaining, macroeconomic coordination and voluntary donations to a
public good. In particular we show that ambiguity may reduce free-riding. Comparative statics
analysis shows that increases in uncertainty will increase donations, to a public good.
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