In a contest there is a single indivisible prize.
Introduction

- In a contest there is a single indivisible prize.
- Agents compete to win this prize by expending money or effort.
In a contest there is a single indivisible prize.
Agents compete to win this prize by expending money or effort.
Contests have been used to model the following interactions:
In a contest there is a single indivisible prize. Agents compete to win this prize by expending money or effort. Contests have been used to model the following interactions:

- R&D and patent races
In a contest there is a single indivisible prize.

Agents compete to win this prize by expending money or effort.

Contests have been used to model the following interactions:

- R&D and patent races
- military conflict
In a contest there is a single indivisible prize.
Agents compete to win this prize by expending money or effort.
Contests have been used to model the following interactions:
- R&D and patent races
- military conflict
- political competition

Rent Dissipation
Tullock argues that the entire value of the prize will be expended during the contest. In practice, it seems that rent dissipation is significantly less than 100%.

David Kelsey (University of Exeter.)
Introduction

- In a contest there is a single indivisible prize.
- Agents compete to win this prize by expending money or effort.
- Contests have been used to model the following interactions:
 - R&D and patent races
 - military conflict
 - political competition
 - litigation
In a contest there is a single indivisible prize.
Agents compete to win this prize by expending money or effort.
Contests have been used to model the following interactions:
 - R&D and patent races
 - military conflict
 - political competition
 - litigation
 - rent-seeking, beauty contests and influence activities

Rent Dissipation
Tullock argues that the entire value of the prize will be expended during the contest.
In practice it seems that rent dissipation is significantly less than 100%.
In a contest there is a single indivisible prize.
Agents compete to win this prize by expending money or effort.
Contests have been used to model the following interactions:

- R&D and patent races
- military conflict
- political competition
- litigation
- rent-seeking, beauty contests and influence activities
- sporting contests
In a contest there is a single indivisible prize.

Agents compete to win this prize by expending money or effort.

Contests have been used to model the following interactions:

- R&D and patent races
- military conflict
- political competition
- litigation
- rent-seeking, beauty contests and influence activities
- sporting contests

Rent Dissipation
In a contest there is a single indivisible prize.

Agents compete to win this prize by expending money or effort.

Contests have been used to model the following interactions:

- R&D and patent races
- military conflict
- political competition
- litigation
- rent-seeking, beauty contests and influence activities
- sporting contests

Rent Dissipation

- Tullock argues that the entire value of the prize will be expended during the contest.
In a contest there is a single indivisible prize.
Agents compete to win this prize by expending money or effort.
Contests have been used to model the following interactions:
- R&D and patent races
- military conflict
- political competition
- litigation
- rent-seeking, beauty contests and influence activities
- sporting contests

Rent Dissipation
- Tullock argues that the entire value of the prize will be expended during the contest.
- In practice it seems that rent dissipation is significantly less than 100%.
There is a contest between 2 players, individual A and individual B.
There is a contest between 2 players, individual A and individual B.
The prize is worth V to both players.
There is a contest between 2 players, individual A and individual B.

The prize is worth V to both players.

Each contestant $i = A, B$ chooses an expenditure or effort level, $x_i \in X_i = [\kappa V, \lambda V]$, where $\kappa < \frac{1}{4}$ and $\lambda > \frac{1}{4}$.
Contest Model

- There is a contest between 2 players, individual A and individual B.
- The prize is worth V to both players.
- Each contestant $i = A, B$ chooses an expenditure or effort level, $x_i \in X_i = [\kappa V, \lambda V]$, where $\kappa < \frac{1}{4}$ and $\lambda > \frac{1}{4}$.
- The probability that individual A will win the contest is given by:

$$p_A(x_A, x_B) = \frac{x_A}{x_A + x_B}.$$
There is a contest between 2 players, individual A and individual B.

The prize is worth V to both players.

Each contestant $i = A, B$ chooses an expenditure or effort level, $x_i \in X_i = [\kappa V, \lambda V]$, where $\kappa < \frac{1}{4}$ and $\lambda > \frac{1}{4}$.

The probability that individual A will win the contest is given by:

$$p_A(x_A, x_B) = \frac{x_A}{x_A + x_B}.$$

Contestant A’s utility function:

$$u_A(x_A, x_B) = \frac{x_A}{x_A + x_B} V - x_A.$$
Nash Equilibrium

Player A’s utility is given by

\[u_A (x_A, x_B) = \frac{x_A}{x_A + x_B} V - x_A. \]

One can derive A’s best response function which is:

\[x_A = \sqrt{Vx_B} - x_B. \]

The best response function has the following properties:

- it is inverse U-shaped, (single peaked);
- the peak occurs where it crosses the 45° line;
- it is above (resp. below) the 45° line before (resp. after) the peak;
- There is a unique Nash equilibrium where \(x_A^* = x_B^* = \frac{V}{4} \);
- half of the rent is dissipated in Nash equilibrium.
Figure: Reaction function

David Kelsey (University of Exeter.)
Contests with Ambiguity
August 2016 5 / 20
Figure: Reaction function

David Kelsey (University of Exeter.)
Contests with Ambiguity
August 2016
6 / 20
Many contests are unique events, thus one cannot base subjective probabilities on relative frequencies.
Many contests are unique events, thus one cannot base subjective probabilities on relative frequencies.

- World War I did not help to predict the outcome of World War II.
Many contests are unique events, thus one cannot base subjective probabilities on relative frequencies.

- World War I did not help to predict the outcome of World War II.
- Beauty contests happen often, but the past tells us little about the probability of success of a given contestant.
Many contests are unique events, thus one cannot base subjective probabilities on relative frequencies.

- World War I did not help to predict the outcome of World War II.
- Beauty contests happen often, but the past tells us little about the probability of success of a given contestant.

Many contests depend on complex systems and/or new technologies, e.g. war, patent races.
Many contests are unique events, thus one cannot base subjective probabilities on relative frequencies.

- World War I did not help to predict the outcome of World War II.
- Beauty contests happen often, but the past tells us little about the probability of success of a given contestant

Many contests depend on complex systems and/or new technologies, e.g. war, patent races.

The outcome of any contest depends on the behaviour of other people. This is intrinsically difficult to predict.
Many contests are unique events, thus one cannot base subjective probabilities on relative frequencies.

- World War I did not help to predict the outcome of World War II.
- Beauty contests happen often, but the past tells us little about the probability of success of a given contestant.

Many contests depend on complex systems and/or new technologies, e.g. war, patent races.

- The outcome of any contest depends on the behaviour of other people. This is intrinsically difficult to predict.
- Players may have ambiguous beliefs about what others will do.
Many contests are unique events, thus one cannot base subjective probabilities on relative frequencies.

- World War I did not help to predict the outcome of World War II.
- Beauty contests happen often, but the past tells us little about the probability of success of a given contestant

Many contests depend on complex systems and/or new technologies, e.g. war, patent races.

The outcome of any contest depends on the behaviour of other people. This is intrinsically difficult to predict.

Players may have ambiguous beliefs about what others will do.

Ambiguity is represented by assigning a set of probabilities to an event, e.g. the probability of winning the war is between 0.5 and 0.7.
The Neo-additive Model of Ambiguity

We use the neo-additive model of ambiguity, axiomatised by Chateauneuf, Eichberger, and Grant (2007). They represent preferences by:

\[\alpha \delta M(a) + \delta (1 - \alpha) m(a) + (1 - \delta) E_{\pi} u(a), \] (1)

- \(M(a) \) denotes the maximum utility of act \(a \),
- \(m(a) \) denotes the minimum utility of act \(a \),
- \(E_{\pi} u(a) \) denotes the expected utility of act \(a \).
- This is a special case of the Choquet expected utility model, Schmeidler (1989), which represents beliefs as capacities.
The Neo-additive Model of Ambiguity

We use the neo-additive model of ambiguity, axiomatised by Chateauneuf, Eichberger, and Grant (2007). They represent preferences by:

$$\alpha \delta M(a) + \delta (1 - \alpha) m(a) + (1 - \delta) E_{\pi} u(a),$$

(1)

- $M(a)$ denotes the maximum utility of act a,
- $m(a)$ denotes the minimum utility of act a,
- $E_{\pi} u(a)$ denotes the expected utility of act a.

This is a special case of the Choquet expected utility model, Schmeidler (1989), which represents beliefs as capacities.

- δ is a measure of perceived ambiguity;
We use the neo-additive model of ambiguity, axiomatised by Chateauneuf, Eichberger, and Grant (2007). They represent preferences by:

\[\alpha \delta M (a) + \delta (1 - \alpha) m(a) + (1 - \delta) E_{\pi} u(a), \]

(1)

- \(M(a) \) denotes the maximum utility of act \(a \),
- \(m(a) \) denotes the minimum utility of act \(a \),
- \(E_{\pi} u(a) \) denotes the expected utility of act \(a \).

This is a special case of the Choquet expected utility model, Schmeidler (1989), which represents beliefs as capacities.

- \(\delta \) is a measure of perceived ambiguity;
- \(\alpha \) measures ambiguity-attitude, \(\alpha = 1 \) (resp. \(\alpha = 0 \)) corresponding to pure optimism (resp. pessimism).
The Neo-additive Model of Ambiguity

We use the neo-additive model of ambiguity, axiomatised by Chateauneuf, Eichberger, and Grant (2007). They represent preferences by:

\[\alpha \delta M(a) + \delta (1 - \alpha) m(a) + (1 - \delta) E_\pi u(a), \]

- \(M(a) \) denotes the maximum utility of act \(a \),
- \(m(a) \) denotes the minimum utility of act \(a \),
- \(E_\pi u(a) \) denotes the expected utility of act \(a \).

This is a special case of the Choquet expected utility model, Schmeidler (1989), which represents beliefs as capacities.

- \(\delta \) is a measure of perceived ambiguity;
- \(\alpha \) measures ambiguity-attitude, \(\alpha = 1 \) (resp. \(\alpha = 0 \)) corresponding to pure optimism (resp. pessimism).
- Only 2 additional parameters needed compared to expected utility.
There is a negative externality. The more your opponent contributes the lower are your chances of winning.
• There is a negative externality. The more your opponent contributes the lower are your chances of winning.

• An optimist places a relatively large decision-weight on the event that the opponent will choose low effort.
There is a negative externality. The more your opponent contributes the lower are your chances of winning.

An optimist places a relatively large decision-weight on the event that the opponent will choose low effort.

This reduces his/her marginal benefit of effort, since (s)he perceives that (s)he is likely to win easily.
There is a negative externality. The more your opponent contributes the lower are your chances of winning.

An optimist places a relatively large decision-weight on the event that the opponent will choose low effort.

This reduces his/her marginal benefit of effort, since (s)he perceives that (s)he is likely to win easily.

A pessimist places over-weights the possibility that his/her opponent will choose high effort.
There is a negative externality. The more your opponent contributes the lower are your chances of winning.

An optimist places a relatively large decision-weight on the event that the opponent will choose low effort.

This reduces his/her marginal benefit of effort, since (s)he perceives that (s)he is likely to win easily.

A pessimist places over-weights the possibility that his/her opponent will choose high effort.

This reduces his/her marginal benefit of effort, since (s)he perceives that (s)he is likely to lose regardless of his/her own effort.
Ambiguity in Contests

- There is a negative externality. The more your opponent contributes the lower are your chances of winning.
- An optimist places a relatively large decision-weight on the event that the opponent will choose low effort.
- This reduces his/her marginal benefit of effort, since (s)he perceives that (s)he is likely to win easily.
- A pessimist places over-weights the possibility that his/her opponent will choose high effort.
- This reduces his/her marginal benefit of effort, since (s)he perceives that (s)he is likely to lose regardless of his/her own effort.
- Since ambiguity increases both optimism and pessimism it reduces the marginal benefit of effort.
There is a negative externality. The more your opponent contributes the lower are your chances of winning.

An optimist places a relatively large decision-weight on the event that the opponent will choose low effort.

This reduces his/her marginal benefit of effort, since (s)he perceives that (s)he is likely to win easily.

A pessimist places over-weights the possibility that his/her opponent will choose high effort.

This reduces his/her marginal benefit of effort, since (s)he perceives that (s)he is likely to lose regardless of his/her own effort.

Since ambiguity increases both optimism and pessimism it reduces the marginal benefit of effort.

The other major influence on behaviour is the intensity of competition. If one’s opponents are providing similar effort levels competition is intense, which increases the incentive to provide effort.
We start by considering a symmetric contest. The prize has the same value, V, for both players.
We start by considering a symmetric contest. The prize has the same value, \(V \), for both players.

Both players perceive the same degree of ambiguity and have the same ambiguity-attitude, \(\delta_A = \delta_B = \hat{\delta} \) and \(\alpha_A = \alpha_B = \hat{\alpha} \).
We start by considering a symmetric contest. The prize has the same value, V, for both players.

Both players perceive the same degree of ambiguity and have the same ambiguity-attitude, $\delta_A = \delta_B = \hat{\delta}$ and $\alpha_A = \alpha_B = \hat{\alpha}$.

Equilibrium effort is a decreasing function of the degree of ambiguity.
Symmetric Equilibrium

- We start by considering a symmetric contest. The prize has the same value, \(V \), for both players.
- Both players perceive the same degree of ambiguity and have the same ambiguity-attitude, \(\delta_A = \delta_B = \hat{\delta} \) and \(\alpha_A = \alpha_B = \hat{\alpha} \).
- Equilibrium effort is a decreasing function of the degree of ambiguity.
- It takes the value \(x_A = x_B = \frac{V}{4} \) when there is no ambiguity and \(x_A = x_B = \left(\sqrt{\lambda} - \lambda \right) V \) when there is maximal ambiguity.
We start by considering a symmetric contest. The prize has the same value, V, for both players.

Both players perceive the same degree of ambiguity and have the same ambiguity-attitude, $\delta_A = \delta_B = \hat{\delta}$ and $\alpha_A = \alpha_B = \hat{\alpha}$.

Equilibrium effort is a decreasing function of the degree of ambiguity.

It takes the value $x_A = x_B = \frac{V}{4}$ when there is no ambiguity and $x_A = x_B = \left(\sqrt{\lambda} - \lambda\right) V$ when there is maximal ambiguity.
Symmetric Equilibrium

- We start by considering a symmetric contest. The prize has the same value, V, for both players.
- Both players perceive the same degree of ambiguity and have the same ambiguity-attitude, $\delta_A = \delta_B = \hat{\delta}$ and $\alpha_A = \alpha_B = \hat{\alpha}$.
- Equilibrium effort is a decreasing function of the degree of ambiguity.
- It takes the value $x_A = x_B = \frac{V}{4}$ when there is no ambiguity and $x_A = x_B = \left(\sqrt{\lambda} - \lambda\right)V$ when there is maximal ambiguity.

Proposition

Assume $\delta_A = \delta_B = \hat{\delta} > 0$ and $\alpha_A = \alpha_B = \hat{\alpha}$. Then:

1. a symmetric equilibrium exists and is unique;
2. there is less effort than in Nash equilibrium;
3. the equilibrium effort level, \hat{x}, is a strictly decreasing function of $\hat{\delta}$.
Increasing ambiguity

\(x_B \)

\(R_A \)

\(\frac{V}{4} \)

\(x_B \)
Ambiguity-Attitude

The effect of a change in ambiguity-attitude is summarised by the following result.

Proposition

Consider the symmetric case where $\delta_A = \delta_B = \hat{\delta}$ and $\alpha_A = \alpha_B = \hat{\alpha}$ then an increase in ambiguity-aversion $\hat{\alpha}$ will reduce equilibrium effort provided $\lambda \kappa V^2 - \hat{x}^2 > 0$.

Remark

Suppose that $\kappa \geq \frac{1}{16 \lambda}$, then $\lambda \kappa V^2 - \hat{x}^2 \geq \frac{V^2}{16} - \hat{x}^2 > 0$ since $x_A < \frac{V}{4}$ by Proposition 4.1. Henceforth we shall assume $X_A = X_B = [\kappa V, \lambda V]$, where $\lambda > \frac{1}{4}$, $\frac{1}{4} > \kappa \geq \frac{1}{16 \lambda}$.

Thus an increase in optimism (ambiguity-loving) usually leads to higher effort.

An decrease in α shifts decision weight from the worst outcome to the best outcome.

The inequality $\kappa \geq \frac{1}{16 \lambda}$ implies that the best case is not too good.
Continue to assume the prize has the same value for both players.

However we allow for asymmetric perceptions of ambiguity $\delta_A \neq \delta_B$ and different ambiguity-attitudes $\alpha_A \neq \alpha_B$.

With ambiguity both players provide less than the Nash equilibrium level of effort.

This is a possible explanation of why rent dissipation is not complete.

Proposition

Assume that both players perceive ambiguity, $1 \geq \delta_A > 0, 1 \geq \delta_B > 0$. Then in equilibrium both will make less than the Nash equilibrium level of contributions.

This result is not true if the value of winning is different for the two players, $V_A \neq V_B$.
Assume the players are initially in a symmetric equilibrium and there is an increase in the ambiguity perceived by Player B. Then in equilibrium both players will provide less effort. More ambiguity causes Player B to put more weight on the possibility that his opponent will play a high strategy. This decreases B’s perceived marginal benefit. Player A responds by reducing her effort, since the competition from B has become less intense.

Proposition

Let $\tilde{x}_A = \tilde{x}_B = \tilde{\delta}$, $\tilde{\alpha}_A = \tilde{\alpha}_B = \tilde{\alpha}$, if $x_0 A, x_0 B$ denotes the equilibrium effort levels when $\delta_A = \tilde{\delta} < \delta_B = \tilde{\delta}$, then:

1. $x_0 B < \tilde{x}_B$,
2. $x_0 A < \tilde{x}_A$,
3. $x_0 A > x_0 B$.

David Kelsey (University of Exeter.)
Comparative Statics of Ambiguity I

- Assume the players are initially in a symmetric equilibrium and there is an increase in the ambiguity perceived by Player B.
- Then in equilibrium both players will provide less effort.
Assume the players are initially in a symmetric equilibrium and there is an increase in the ambiguity perceived by Player B.

Then in equilibrium both players will provide less effort.

More ambiguity causes Player B to put more weight on the possibility that his opponent will play a high strategy. This decreases B’s perceived marginal benefit.
Assume the players are initially in a symmetric equilibrium and there is an increase in the ambiguity perceived by Player B. Then in equilibrium both players will provide less effort. More ambiguity causes Player B to put more weight on the possibility that his opponent will play a high strategy. This decreases B’s perceived marginal benefit.

Player A responds by reducing her effort, since the competition from B has become less intense.
Assume the players are initially in a symmetric equilibrium and there is an increase in the ambiguity perceived by Player B. Then in equilibrium both players will provide less effort. More ambiguity causes Player B to put more weight on the possibility that his opponent will play a high strategy. This decreases B’s perceived marginal benefit.

Player A responds by reducing her effort, since the competition from B has become less intense.
Assume the players are initially in a symmetric equilibrium and there is an increase in the ambiguity perceived by Player B. Then in equilibrium both players will provide less effort. More ambiguity causes Player B to put more weight on the possibility that his opponent will play a high strategy. This decreases B’s perceived marginal benefit. Player A responds by reducing her effort, since the competition from B has become less intense.

Proposition

Let $\tilde{x}_A = \tilde{x}_B = \tilde{x}$ denote the equilibrium effort levels when $\delta_A = \delta_B = \tilde{\delta}$, $\alpha_A = \alpha_B = \tilde{\alpha}$. If $\langle x'_A, x'_B \rangle$ denotes the equilibrium effort levels when $\delta_A = \tilde{\delta} < \delta_B = \hat{\delta}$, then:

1. $x'_B < \tilde{x}_B$,
2. $x'_A < \tilde{x}_A$,
3. $x'_A > x'_B$.

David Kelsey (University of Exeter.)
Contests with Ambiguity
August 2016
B perceives more ambiguity
Comparative Statics of Ambiguity II

- Starting at a symmetric equilibrium assume that Player A perceives less ambiguity.
- This causes A’s equilibrium effort to rise.
- Players B’s effort will fall since the competition from A has become less intense. The competition is now biased in A’s favour, which reduces B’s marginal benefit of effort.

Proposition

Let \(\hat{x}_A = \hat{x}_B = \hat{x} \) denote the equilibrium effort levels when \(\delta_A = \delta_B = \hat{\delta} \), \(\alpha_A = \alpha_B = \hat{\alpha} \). If \(\langle x'_A, x'_B \rangle \) denotes the equilibrium effort levels when \(\delta_A = \tilde{\delta} < \delta_B = \hat{\delta}, \alpha_A = \alpha_B = \hat{\alpha} \). Then:

1. \(\hat{x}_A < x'_A \),
2. \(x'_B < \hat{x}_B \),
3. \(x'_A > x'_B \).
A perceives less ambiguity

\(R_B\)

\(R_A\)

\(R'_A\)
Suppose you could choose your ambiguity-attitude. Which ambiguity-attitude should you choose?

Equivalently supposing instead of playing the game yourself you can appoint an agent to play it for you. What is the best ambiguity-attitude for such an agent to have?

Assuming that you are initially behind, you should choose an agent who is rather more ambiguity-averse than you are.

Recall Fudenberg and Tirole have decomposed the consequences of appointing an agent into a strategic effect and a direct effect. By the envelope theorem the direct effect is negligible for small changes. A more ambiguity-averse agent will provide less effort than you would. This has the strategic advantage of inducing your rival to expend less effort, which has a positive effect on your payoff.
Suppose you could choose your ambiguity-attitude. Which ambiguity-attitude should you choose?

Equivalently supposing instead of playing the game yourself you can appoint an agent to play it for you. What is the best ambiguity-attitude for such an agent to have?
Suppose you could choose your ambiguity-attitude. Which ambiguity-attitude should you choose?

Equivalently supposing instead of playing the game yourself you can appoint an agent to play it for you. What is the best ambiguity-attitude for such an agent to have?

Assuming that you are initially behind, you should choose an agent who is rather more ambiguity-averse than you are.
Suppose you could choose your ambiguity-attitude. Which ambiguity-attitude should you choose?

Equivalently supposing instead of playing the game yourself you can appoint an agent to play it for you. What is the best ambiguity-attitude for such an agent to have?

Assuming that you are initially behind, you should choose an agent who is rather more ambiguity-averse than you are.

Recall Fudenberg and Tirole have decomposed the consequences of appointing an agent into a strategic effect and a direct effect.
Suppose you could choose your ambiguity-attitude. Which ambiguity-attitude should you choose?

Equivalently supposing instead of playing the game yourself you can appoint an agent to play it for you. What is the best ambiguity-attitude for such an agent to have?

Assuming that you are initially behind, you should choose an agent who is rather more ambiguity-averse than you are.

Recall Fudenberg and Tirole have decomposed the consequences of appointing an agent into a strategic effect and a direct effect.

By the envelope theorem the direct effect is negligible for small changes.
Suppose you could choose your ambiguity-attitude. Which ambiguity-attitude should you choose?

Equivalently supposing instead of playing the game yourself you can appoint an agent to play it for you. What is the best ambiguity-attitude for such an agent to have?

Assuming that you are initially behind, you should choose an agent who is rather more ambiguity-averse than you are.

Recall Fudenberg and Tirole have decomposed the consequences of appointing an agent into a strategic effect and a direct effect.

By the envelope theorem the direct effect is negligible for small changes.

A more ambiguity-averse agent will provide less effort than you would. This has the strategic advantage of inducing your rival to expend less effort, which has a positive effect on your pay-off.
In the presence of ambiguity rent dissipation is less than 100%.
In the presence of ambiguity rent dissipation is less than 100%.

Most general comparative static results assume strategic complementarity, e.g. Milgrom and Roberts, Econometrica 1990.
In the presence of ambiguity rent dissipation is less than 100%.

Most general comparative static results assume strategic complementarity, e.g. Milgrom and Roberts, Econometrica 1990.

The comparative statics of ambiguity in contests is predictable, despite the fact that contests do not exhibit strategic complementarity.
Conclusion

- In the presence of ambiguity rent dissipation is less than 100%.
- Most general comparative static results assume strategic complementarity, e.g. Milgrom and Roberts, Econometrica 1990.
- The comparative statics of ambiguity in contests is predictable, despite the fact that contests do not exhibit strategic complementarity.
- Directions for future research.
In the presence of ambiguity rent dissipation is less than 100%.

Most general comparative static results assume strategic complementarity, e.g. Milgrom and Roberts, Econometrica 1990.

The comparative statics of ambiguity in contests is predictable, despite the fact that contests do not exhibit strategic complementarity.

Directions for future research.

- Other behavioural biases, e.g. overconfidence, loss aversion.
In the presence of ambiguity rent dissipation is less than 100%.

Most general comparative static results assume strategic complementarity, e.g. Milgrom and Roberts, Econometrica 1990.

The comparative statics of ambiguity in contests is predictable, despite the fact that contests do not exhibit strategic complementarity.

Directions for future research.

- Other behavioural biases, e.g. overconfidence, loss aversion.
- Can the results be generalised to a larger class of games, e.g. all games of aggregate externalities where marginal benefit is single peaked?