Political Economy and the Firm

David Kelsey
Department of Economics

University of Exeter

June 2011.
In Bulkley, Myles, and Pearson (2001) individuals decide whether or not to vote when voting is costly.

There is a one-dimensional policy space with issues arranged on a left-right spectrum.

Voters have single peaked preferences.

The outcome is determined by the median voter rule.

Redoano (2010) uses the menu auction model to study when groups will lobby. She also finds that it is the extreme groups which have the greatest incentive to lobby.
In Bulkley, Myles, and Pearson (2001) individuals decide whether or not to vote when voting is costly. There is a one-dimensional policy space with issues arranged on a left right spectrum. Voters have single peaked preferences. The outcome is determined by the median voter rule.

They find that in equilibrium, the k^* most left wing individuals vote and the k^* most right wing individuals vote. Despite this the chosen policy reflects a centrist position.
In Bulkley, Myles, and Pearson (2001) individuals decide whether or not to vote when voting is costly.

There is a one-dimensional policy space with issues arranged on a left right spectrum.

Voters have single peaked preferences.

The outcome is determined by the median voter rule.

They find that in equilibrium, the k^* most left wing individuals vote and the k^* most right wing individuals vote.

Despite this the chosen policy reflects a centrist position.

Redoano (2010) uses the menu auction model to study when groups will lobby.

She also finds that it is the extreme groups which have the greatest incentive to lobby.
Meyer, Milgrom, and Roberts (1992) (MMR) argue that rent seeking can take place within private sector firms. Weaker divisions may lobby the head office for subsidies. Such lobbying is undesirable because it risks shifting investment from more to less productive divisions. Moreover, the resources used in lobbying are wasted. MMR argue that this rent-seeking and the associated influence costs may be reduced by divesting the weaker divisions. Evidence shows that it is usually the less profitable divisions which are divested. The buyer is typically either a management buyout or a firm in a related line of business. Sometimes the most high performing division is divested.
Meyer, Milgrom, and Roberts (1992) (MMR) argue that rent seeking can take place within private sector firms.

Weaker divisions may lobby the head office for subsidies.
Rent Seeking in Firms

- Meyer, Milgrom, and Roberts (1992) (MMR) argue that rent seeking can take place within private sector firms.
- Weaker divisions may lobby the head office for subsidies.
- Such lobbying is undesirable because it risks shifting investment from more to less productive divisions.
Rent Seeking in Firms

- Meyer, Milgrom, and Roberts (1992) (MMR) argue that rent seeking can take place within private sector firms.
- Weaker divisions may lobby the head office for subsidies.
- Such lobbying is undesirable because it risks shifting investment from more to less productive divisions.
- Moreover the resources used in lobbying are wasted.
Rent Seeking in Firms

- Meyer, Milgrom, and Roberts (1992) (MMR) argue that rent seeking can take place within private sector firms.
- Weaker divisions may lobby the head office for subsidies.
- Such lobbying is undesirable because it risks shifting investment from more to less productive divisions.
- Moreover the resources used in lobbying are wasted.

Evidence shows that it is usually the less profitable divisions which are divested. The buyer is typically either a management buyout or a firm in a related line of business.

Sometimes the most high performing division is divested.
Meyer, Milgrom, and Roberts (1992) (MMR) argue that rent seeking can take place within private sector firms.

Weaker divisions may lobby the head office for subsidies.

Such lobbying is undesirable because it risks shifting investment from more to less productive divisions.

Moreover the resources used in lobbying are wasted.

MMR argue that this rent-seeking and the associated influence costs may be reduced by divesting the weaker divisions.

Evidence shows that it is usually the less profitable divisions which are divested. The buyer is typically either a management buyout or a firm in a related line of business.

Sometimes the most high performing division is divested.
There is a one dimensional policy decision, for instance to determine the level of provision of a public good. The policy x is chosen from a policy space X.

There is a set I of $2n$ individuals, divided into two equal sized groups, high agents $H = \{H_1, \ldots, H_n\}$ and low agents $L = \{L_1, \ldots, L_n\}$.

Individual i has a strictly concave utility function $u_i : X \rightarrow \mathbb{R}$.

Individual i has ideal level of public good provision $x_i^* \in X$.

Higher numbered individuals from the H-group (resp. L-group) want higher (resp. lower) levels of public good, i.e.

$$x_{H_n}^* > x_{H_{n-1}}^* > \ldots > x_{H_1}^* > x_{L_1}^* > \ldots > x_{L_n}^*.$$
Each individual, \(i \), decides whether or not to participate at cost \(c_i \). (The cost of voting can be either in money or in time.)
Each individual, i, decides whether or not to participate at cost c_i. (The cost of voting can be either in money or in time.)

Let Λ denote the set of individuals who choose to participate in the political process and let $x(\Lambda)$ denote the provision of the public good.
Political Process

- Each individual, i, decides whether or not to participate at cost c_i. (The cost of voting can be either in money or in time.)
- Let Λ denote the set of individuals who choose to participate in the political process and let $x(\Lambda)$ denote the provision of the public good.
- Define $v_i(\Lambda) = u_i(x(\Lambda))$.
Political Process

- Each individual, \(i \), decides whether or not to participate at cost \(c_i \). (The cost of voting can be either in money or in time.)
- Let \(\Lambda \) denote the set of individuals who choose to participate in the political process and let \(x(\Lambda) \) denote the provision of the public good.
- Define \(v_i(\Lambda) = u_i(x(\Lambda)) \).
- Then if \(i \in \Lambda \), individual \(i \)'s marginal benefit of participating is given by \(\Delta_i(\Lambda) = v_i(\Lambda) - v_i(\Lambda \backslash i) \).
Political Process

- Each individual, \(i \), decides whether or not to participate at cost \(c_i \). (The cost of voting can be either in money or in time.)
- Let \(\Lambda \) denote the set of individuals who choose to participate in the political process and let \(x(\Lambda) \) denote the provision of the public good.
- Define \(v_i(\Lambda) = u_i(x(\Lambda)) \).
- Then if \(i \in \Lambda \), individual \(i \)'s marginal benefit of participating is given by \(\Delta_i(\Lambda) = v_i(\Lambda) - v_i(\Lambda \setminus i) \).
- Individual \(i \) will choose to participate if \(\Delta_i(\Lambda) > c_i \).
Each individual, i, decides whether or not to participate at cost c_i. (The cost of voting can be either in money or in time.)

Let Λ denote the set of individuals who choose to participate in the political process and let $x(\Lambda)$ denote the provision of the public good.

Define $v_i(\Lambda) = u_i(x(\Lambda))$.

Then if $i \in \Lambda$, individual i’s marginal benefit of participating is given by $\Delta_i(\Lambda) = v_i(\Lambda) - v_i(\Lambda \setminus i)$.

Individual i will choose to participate if $\Delta_i(\Lambda) > c_i$.

There is strategic complementarity between groups. However there is free riding within a group, which means this is also partly a game of strategic substitutes.
Examples

Median Voter Rule

- Number individuals so that the ideal points of members of Λ satisfy $x_1 < \ldots < x_{|\Lambda|}$.
- The chosen outcome $C(\Lambda)$ is the median of $\{x_\ell : \ell \in \Lambda\}$ if $|\Lambda| = 2m + 1$, i.e. $C(\Lambda) = x_{m+1}$.
- $C(\Lambda) = \frac{1}{2}(x_m + x_{m+1})$, if $|\Lambda| = 2m$.
Examples

Median Voter Rule

- Number individuals so that the ideal points of members of \(\Lambda \) satisfy
 \[x_1 < \ldots < x_{|\Lambda|}. \]
- The chosen outcome \(C(\Lambda) \) is the median of \(\{x_\ell : \ell \in \Lambda\} \) if \(|\Lambda| = 2m + 1 \), i.e.
 \[C(\Lambda) = x_{m+1}. \]
- \(C(\Lambda) = \frac{1}{2} (x_m + x_{m+1}) \), if \(|\Lambda| = 2m \).

Menu-Auction Lobbying

- Divisions lobby the CEO to make decisions in their favour.
- The CEO charges as if (s)he is a perfect price discriminator.
Assumptions I

Assumption

Marginal benefit is increasing in k, i.e.

1. If $H_j, H_\ell \in \Lambda$, with $j > \ell$ then $\Delta_{H_j}(\Lambda) > \Delta_{H_\ell}(\Lambda)$.
2. If $L_j, L_\ell \in \Lambda$, with $j > \ell$ then $\Delta_{L_j}(\Lambda) > \Delta_{L_\ell}(\Lambda)$.

The following assumption says that adding two groups with equal and opposite preferences does not affect the marginal benefit of a third party.

Assumption (Matched Pairs)

Suppose that $H_{\bar{k}} \notin \Lambda, L_{\bar{k}} \notin \Lambda, k \neq \bar{k}$ then $\Delta_{H_k}(\Lambda) = \Delta_{H_k}(\Lambda \cup H_{\bar{k}} \cup L_{\bar{k}})$, for all $k \neq \bar{k}$.
Assumptions II

Assumption

Marginal benefit is greater the more opponents there are. Similarly marginal benefit is higher the fewer people who are on your own side.

1. if $L_j \notin \Lambda, H_k \in \Lambda, \Delta_{H_k} (\Lambda \cup L_j) \geq \Delta_{H_k} (\Lambda)$;
2. if $H_j \notin \Lambda, L_k \in \Lambda, \Delta_{L_k} (\Lambda \cup H_j) \geq \Delta_{L_k} (\Lambda)$;
3. if $H_j \notin \Lambda, H_k \in \Lambda, \Delta_{H_k} (\Lambda \cup H_j) \leq \Delta_{H_k} (\Lambda)$;
4. if $L_j \notin \Lambda, L_k \in \Lambda, \Delta_{L_k} (\Lambda \cup L_j) \leq \Delta_{L_k} (\Lambda)$.
Assumptions III

Assumption (Higher Rank)

If \(\hat{k} > \tilde{k} \) and \(H_{\hat{k}} \in \Lambda \), and \(H_{\hat{k}} \notin \Lambda \), and \(H_k, L_k \in \Lambda \), then
\[
\Delta H_{\hat{k}} (\Lambda) \geq \Delta H_{\hat{k}} \left((\Lambda \setminus H_{\hat{k}}) \cup H_{\tilde{k}} \right) \text{ and } \Delta L_k (\Lambda) \leq \Delta L_k \left((\Lambda \setminus H_{\hat{k}}) \cup H_{\tilde{k}} \right).
\]

In a lobbying game, a higher ranked individual would have a more benefit from public goods and so would lobby harder. Under the median voter rule a higher ranked individual joining would cause the median to shift by more.

Assumption (Replacement)

Assume that \(\hat{k} > \tilde{k} \). If \(\Lambda \) is such that \(H_{\hat{k}} \notin \Lambda \) and \(H_{\tilde{k}} \in \Lambda \) then
\[
\Delta H_{\hat{k}} ((\Lambda \setminus H_{\tilde{k}}) \cup H_{\hat{k}}) > \Delta H_{\tilde{k}} (\Lambda).
\]
Consider a symmetric lobbying game Γ, which satisfies Assumptions 2 (opposite pairs), and 3 (MB-opponents). Then Γ has a symmetric equilibrium in pure strategies. Existence follows from Nash' s theorem. This result also characterises the equilibrium and establishes existence in pure strategies.
Consider a symmetric lobbying game Γ, which satisfies Assumptions 2 (opposite pairs), and 3 (MB-opponents). Then Γ has a symmetric equilibrium in pure strategies.

In equilibrium, the k^* individuals with the most extreme preferences from the H-group and the k^* individuals with the most extreme preferences from the L-group, participate in the political process.
Existence of Equilibrium

Theorem

Consider a symmetric lobbying game Γ, which satisfies Assumptions 2 (opposite pairs), and 3 (MB-opponents). Then Γ has a symmetric equilibrium in pure strategies.

- In equilibrium, the k^* individuals with the most extreme preferences from the H-group and the k^* individuals with the most extreme preferences from the L-group, participate in the political process.

- Existence follows from Nash’s theorem. This result also characterises the equilibrium and establishes existence in pure strategies.
\[H_n \quad H_{n-1} \quad H_{n-2} \quad H_1 \quad L_1 \quad L_{n-2} \quad L_{n-1} \quad L_n \]
Imagine the cost of lobbying, c, is initially very high and is gradually lowered.
Comparative Statics

- Imagine the cost of lobbying, c, is initially very high and is gradually lowered.
- Initially no group will lobby.

Allowing for non-uniqueness, a reduction in the cost of lobbying will increase the size of the largest and smallest equilibrium lobbies.

Theorem
Consider a symmetric lobbying game Γ, which satisfies Assumptions 1, 2, 3, 4, and 5. Then the size of the largest and smallest equilibrium lobbies are a decreasing function of the cost of lobbying c.
Comparative Statics

- Imagine the cost of lobbying, \(c \), is initially very high and is gradually lowered.
- Initially no group will lobby.
- As the cost is lowered we shall get to a point where the two most extreme groups, \(H_n \) and \(L_n \) lobby. The two groups will enter simultaneously.
Comparative Statics

- Imagine the cost of lobbying, c, is initially very high and is gradually lowered.
- Initially no group will lobby.
- As the cost is lowered we shall get to a point where the two most extreme groups, H_n and L_n lobby. The two groups will enter simultaneously.
- As c is progressively lowered there will be series of critical points at these the two most extreme groups on either side will join the lobby. This process will continue until $c = 0$ when all groups lobby.
Comparative Statics

- Imagine the cost of lobbying, \(c \), is initially very high and is gradually lowered.
- Initially no group will lobby.
- As the cost is lowered we shall get to a point where the two most extreme groups, \(H_n \) and \(L_n \) lobby. The two groups will enter simultaneously.
- As \(c \) is progressively lowered there will be series of critical points at these the two most extreme groups on either side will join the lobby. This process will continue until \(c = 0 \) when all groups lobby.
- Allowing for non-uniqueness, a reduction in the cost of lobbying will increase the size of the largest and smallest equilibrium lobbies.
Imagine the cost of lobbying, c, is initially very high and is gradually lowered.

Initially no group will lobby.

As the cost is lowered we shall get to a point where the two most extreme groups, H_n and L_n lobby. The two groups will enter simultaneously.

As c is progressively lowered there will be series of critical points at these the two most extreme groups on either side will join the lobby. This process will continue until $c = 0$ when all groups lobby.

Allowing for non-uniqueness, a reduction in the cost of lobbying will increase the size of the largest and smallest equilibrium lobbies.
Imagine the cost of lobbying, c, is initially very high and is gradually lowered.

Initially no group will lobby.

As the cost is lowered we shall get to a point where the two most extreme groups, H_n and L_n lobby. The two groups will enter simultaneously.

As c is progressively lowered there will be series of critical points at these the two most extreme groups on either side will join the lobby. This process will continue until $c = 0$ when all groups lobby.

Allowing for non-uniqueness, a reduction in the cost of lobbying will increase the size of the largest and smallest equilibrium lobbies.

Theorem

Consider a symmetric lobbying game Γ, which satisfies Assumptions 1, 2, 3, 4, and 5. Then the size of largest and smallest equilibrium lobbies are a decreasing function of the cost of lobbying c.
In general, we would not expect the equilibria to be unique due to strategic complementarity.

Assumption 3 (MB-opponents) implies $\Delta_{H_n}(\emptyset) < \Delta_{H_n}(H_n, L_n)$.

Thus if the cost of voting, c, is such that

$$\Delta_{H_n}(\emptyset) < c < \Delta_{H_n}(H_n, L_n)$$

there will be two equilibria one where nobody votes and one where both H_n and L_n vote.
The following result demonstrates that any equilibrium lobby must contain an equal number of \(L \) and \(H \) individuals.

Definition

A lobby \(\Lambda \) is balanced if it contains an equal number of \(L \) and \(H \) individuals.

Proposition

If \(\Gamma \) is a symmetric lobbying game, which satisfies Assumption 3 (MB-opponents), then an equilibrium lobby must be balanced.
Suppose different groups face different costs of voting.

- Suppose different groups face different costs of voting.
Suppose different groups face different costs of voting.

Suppose that the H-group may vote for free, while the L-group has to pay a cost, $c_L > 0$, for voting.
Suppose different groups face different costs of voting.

Suppose that the H-group may vote for free, while the L-group has to pay a cost, $c_L > 0$, for voting.

Decisions are made by the median voter rule.
Suppose different groups face different costs of voting.

Suppose that the H-group may vote for free, while the L-group has to pay a cost, $c_L > 0$, for voting.

Decisions are made by the median voter rule.

Then if the cost is above a threshold then only members of the H-group will vote.
Suppose different groups face different costs of voting.
Suppose that the H-group may vote for free, while the L-group has to pay a cost, $c_L > 0$, for voting.
Decisions are made by the median voter rule.
Then if the cost is above a threshold then only members of the H-group will vote.
Differential Costs of Voting

- Suppose different groups face different costs of voting.
- Suppose that the H-group may vote for free, while the L-group has to pay a cost, $c_L > 0$, for voting.
- Decisions are made by the median voter rule.
- Then if the cost is above a threshold then only members of the H-group will vote.

Proposition

Assume that H’s face zero cost of voting. Provided the cost of voting for the L’s, $c_L \geq \tilde{c} = v_{L_n} \left(x_{H_p}^* - x_{L_n} \right) - v_{L_n} \left(m_H - x_{L_n} \right)$ then in equilibrium:

1. none of the L-group votes,
2. the outcome is the median of the H-group, m_H.

(University of Exeter) Political Economy and the Firm June 2011. 17 / 25
\[H_{2m} \quad \quad H_{m+1} \quad H_m \quad \hat{X} \quad \hat{H}_1 \quad L_1 \quad L_2 \quad L_n \]
Small differences in the cost of voting can cause large differences in the outcome of elections.
- Small differences in the cost of voting can cause large differences in the outcome of elections.
- Similar but less stark results apply if both groups face positive cost of voting but one group has a higher cost than the other.
Small differences in the cost of voting can cause large differences in the outcome of elections.

Similar but less stark results apply if both groups face positive cost of voting but one group has a higher cost than the other.

Similar results apply if the benefits of voting differ between groups.
Small differences in the cost of voting can cause large differences in the outcome of elections.

Similar but less stark results apply if both groups face positive cost of voting but one group has a higher cost than the other.

Similar results apply if the benefits of voting differ between groups.

Government policy should aim to keep the costs of participation equal for all.
Small differences in the cost of voting can cause large differences in the outcome of elections.

Similar but less stark results apply if both groups face positive cost of voting but one group has a higher cost than the other.

Similar results apply if the benefits of voting differ between groups.

Government policy should aim to keep the costs of participation equal for all.

This arises because the costs of voting are correlated with differences in taste.
Small differences in the cost of voting can cause large differences in the outcome of elections.

Similar but less stark results apply if both groups face positive cost of voting but one group has a higher cost than the other.

Similar results apply if the benefits of voting differ between groups.

Government policy should aim to keep the costs of participation equal for all.

This arises because the costs of voting are correlated with differences in taste.

On-line voting may be better if it makes the opportunity cost of voting more equal.
Joh Bjelke-Petersen was state premier of Queensland from 1968-1987. His party, the right-wing National party held power from 1957 to 1989.
Joh Bjelke-Petersen was state premier of Queensland from 1968-1987. His party, the right-wing National party held power from 1957 to 1989.

Queensland is not intrinsically right-wing. The left-wing Labor party was regularly in power both before and after this period.
Joh Bjelke-Petersen was state premier of Queensland from 1968-1987. His party, the right-wing National party held power from 1957 to 1989.

Queensland is not intrinsically right-wing. The left-wing Labor party was regularly in power both before and after this period.

Bjelke-Petersen’s dominance of power was achieved by biasing the electoral rules in his favour. The system favoured rural voters who tended to vote for the National party.
- Joh Bjelke-Petersen was state premier of Queensland from 1968-1987. His party, the right-wing National party held power from 1957 to 1989.

- Queensland is not intrinsically right-wing. The left-wing Labor party was regularly in power both before and after this period.

- Bjelke-Petersen’s dominance of power was achieved by biasing the electoral rules in his favour. The system favoured rural voters who tended to vote for the National party.

- However any bias was not great. Australia was viewed as being a full member of the group of western democracies during this time.
Implications for Corporate Governance

- In corporate governance insiders face a lower cost of voting than outsiders. Hence they are able to keep control will a relatively low proportion of votes (shares).
Implications for Corporate Governance

- In corporate governance insiders face a lower cost of voting than outsiders. Hence they are able to keep control will a relatively low proportion of votes (shares).
- Like MMR we find that it is the extreme divisions which have the greatest incentive to lobby.
Implications for Corporate Governance

- In corporate governance insiders face a lower cost of voting than outsiders. Hence they are able to keep control with a relatively low proportion of votes (shares).
- Like MMR we find that it is the extreme divisions which have the greatest incentive to lobby.
- Rent seeking within organisations. Meyer, Milgrom, and Roberts (1992) consider a multi-division firm. Then the divisions may have an incentive to lobby the centre for transfers. It will be the extreme, i.e. the best and worst performing divisions, which have the greatest incentive to lobby the centre.
Implications for Corporate Governance

- In corporate governance insiders face a lower cost of voting than outsiders. Hence they are able to keep control with a relatively low proportion of votes (shares).

- Like MMR we find that it is the extreme divisions which have the greatest incentive to lobby.

- Rent seeking within organisations. Meyer, Milgrom, and Roberts (1992) consider a multi-division firm. Then the divisions may have an incentive to lobby the centre for transfers. It will be the extreme, i.e. the best and worst performing divisions, which have the greatest incentive to lobby the centre.

- Suppose a firm incurs influence costs
Implications for Corporate Governance

- In corporate governance insiders face a lower cost of voting than outsiders. Hence they are able to keep control with a relatively low proportion of votes (shares).
- Like MMR we find that it is the extreme divisions which have the greatest incentive to lobby.
- Rent seeking within organisations. Meyer, Milgrom, and Roberts (1992) consider a multi-division firm. Then the divisions may have an incentive to lobby the centre for transfers. It will be the extreme, i.e. the best and worst performing divisions, which have the greatest incentive to lobby the centre.
- Suppose a firm incurs influence costs
 - Costs may be reduced by divesting the extreme division.
Implications for Corporate Governance

- In corporate governance insiders face a lower cost of voting than outsiders. Hence they are able to keep control with a relatively low proportion of votes (shares).
- Like MMR, we find that it is the extreme divisions which have the greatest incentive to lobby.
- Rent seeking within organisations. Meyer, Milgrom, and Roberts (1992) consider a multi-division firm. Then the divisions may have an incentive to lobby the centre for transfers. It will be the extreme, i.e., the best and worst performing divisions, which have the greatest incentive to lobby the centre.
- Suppose a firm incurs influence costs
 - Costs may be reduced by divesting the extreme division.
 - Costs may also be reduced by merging with a division with opposite preferences thus moving the overall political outcome to a more centrist position.
Voting when there is a cost to voting. Policies differ in one dimension, e.g. left-right. As Bulkley and Myles (2001) show, in equilibrium $2k$ individuals will vote. The k with the most extreme left wing views and the k with the most extreme right wing views.
Applications

- Voting when there is a cost to voting. Policies differ in one dimension, e.g. left-right. As Bulkley and Myles (2001) show, in equilibrium $2k$ individuals will vote. The k with the most extreme left wing views and the k with the most extreme right wing views.

- The two types could be men and women. Suppose they have to pay a cost to meet, e.g. by paying for a dating agency/website or by paying to go to the disco. Then the k men most keen to find a partner go to the dating agency, (similarly for the women).
Applications

- Voting when there is a cost to voting. Policies differ in one dimension, e.g. left-right. As Bulkley and Myles (2001) show, in equilibrium $2k$ individuals will vote. The k with the most extreme left wing views and the k with the most extreme right wing views.

- The two types could be men and women. Suppose they have to pay a cost to meet, e.g. by paying for a dating agency/website or by paying to go to the disco. Then the k men most keen to find a partner go to the dating agency, (similarly for the women).

- Groups lobbying the government for favours. It is the more extreme groups who will spend the most time and money lobbying.
Voting when there is a cost to voting. Policies differ in one dimension, e.g. left-right. As Bulkley and Myles (2001) show, in equilibrium $2k$ individuals will vote. The k with the most extreme left wing views and the k with the most extreme right wing views.

The two types could be men and women. Suppose they have to pay a cost to meet, e.g. by paying for a dating agency/website or by paying to go to the disco. Then the k men most keen to find a partner go to the dating agency, (similarly for the women).

Groups lobbying the government for favours. It is the more extreme groups who will spend the most time and money lobbying.

Volunteer armies. Consider community conflict as in Northern Ireland. Then it is the extremists on both sides who join the paramilitaries.
A common feature of voting and lobbying is that the extremes have the greatest incentive to participate.

Relatively small differences in participation costs can have large effects on outcomes.

Directions for Future Research.

- Extend to a larger more general models of the political process, e.g. lobbying, bargaining etc.
- Explore implications for internal decision-making within firms.
- How do corporate control events such as mergers, takeovers and divestitures affect the internal politics of the firm?

