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�Since the fabric of the universe is most perfect, and is the work of a most
perfect creator, nothing whatsoever takes place in the universe in which some
form of maximum or minimum does not appear.�
Leonhard Euler, 1744

1 Objective

Two types of optimization problems frequently occur in economics: unconstrained opti-
mization problems like pro�t maximization problems and constrained optimization prob-
lems like the utility maximization problem of consumer constrained by a budget. In
this handout we discuss the main step to solve an unconstrained optimization problem
- namely to �nd the two ��rst order conditions�and how to solve them. The solutions
for this system of two equations in two unknowns can be local maxima, minima or sad-
dle points. How to distinguish between these types (�second order conditions�) will be
discussed in the next handout.
In order to solve the �rst order conditions one has to solve a simultaneous system of

equations. We will review methods to solve linear simultaneous systems.
Thereafter we develop the Lagrangian approach for constrained optimization problems.

2 Optimization problems

2.1 Unconstrained optimization

Suppose we want to �nd the absolute maximum of a function

z = f (x; y)

in two variables, i.e., we want to �nd the pair of numbers (x�; y�) such that

f (x�; y�) � f (x; y)

holds for all (x; y). If (x�; y�) is such a maximum the following must hold: If we freeze
the variable y at the optimal value y� and vary only the variable x then the function

f (x; y�)

�which is now just a function in just one variable �has a maximum at x�. Typically the
maximum of this function in one variable will be a critical point. Hence we expect the



partial derivative @z
@x
to be zero at the optimum. Similarly we expect the partial derivative

@z
@y
to be zero at the optimum. We are thus led to the �rst order conditions

@z

@x jx=x�;y=y�
= 0

@z

@y jx=x�;y=y�
= 0

which must typically be satis�ed. We speak of �rst order conditions because only the
�rst derivatives are involved. The conditions do not tell us whether we have a maximum,
a minimum or a saddle point. To �nd out the latter we will have to look at the second
derivatives and the so-called �second order conditions�, as will be discussed in a later
lecture.

Example 1 Consider a price-taking �rm with the production function Q (K;L). Let r
be the interest rate (the price of capital K), let w be the wage rate (the price of labour L)
and let P be the price of the output the �rm is producing. When the �rm uses K units of
capital and L units labour she can produce Q (K;L) units of the output and hence make
a revenue of

P �Q (K;L)
by selling each unit of output at the market price P . Her production costs will then be
her total expenditure on the inputs capital and labour

rK + wL:

Her pro�t will be the di¤erence

�(K;L) = PQ (K;L)� rK � rL:

The �rm tries to �nd the input combination (K�; L�) which maximizes her pro�t. To �nd
it we want to solve the �rst order conditions

@�

@K
= P

@Q

@K
� r = 0 (1)

@�

@L
= P

@Q

@L
� w = 0 (2)

These conditions are intuitive: Suppose for instance P @Q
@K
� r > 0: @Q

@K
is the marginal

product of capital, i.e., it tells us how much more can be produced by using one more
unit of capital. P @Q

@K
is the marginal increase in revenue when one more unit of capital is

used and the additional output is sold on the market. r is the marginal cost of using one
more unit of capital. P @Q

@K
� r > 0 means that the marginal pro�t from using one more

unit of capital is positive, i.e., it increases pro�ts to produce more by using more capital
and therefore we cannot be in a pro�t optimum. Correspondingly, P @Q

@K
� r < 0 would

mean that pro�t can be increased by producing less and using less capital. So (1) should
hold in the optimum. Similarly (2) should hold.
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It is useful to rewrite the two �rst order conditions as

@Q

@K
=

r

P
(3)

@Q

@L
=

w

P
(4)

Thus, for both inputs it must be the case that the marginal product is equal to the price
ratio of input- to output price. When we divide here the two left-hand sides and equate
them with the quotient of the right hand sides we obtain as a consequence

@Q

@K

�
@Q

@L
=
r

P

. w
P
=
r

w
(5)

so the marginal rate of substitution must be equal to the price ratio of the input price
(which is the relative price of capital in terms of labour).

Example 2 Let us be more speci�c and assume that the production function is

Q (K;L) = K
1
6L

1
2

and that the output- and input prices are P = 12, r = 1 and w = 3. Then

@Q

@K
=

1

6
K� 5

6L
1
2

@Q

@L
=
1

2
K

1
6L�

1
2

@Q

@K

�
@Q

@L
=

1

6
K� 5

6L
1
2

�
1

2
K

1
6L�

1
2 =

1

3
K� 5

6L
1
2K� 1

6L
1
2 =

1

3

L

K

The �rst order conditions (3) and (4) become

1

6
K� 5

6L
1
2 =

1

12
(6)

1

2
K

1
6L�

1
2 =

3

12
: (7)

This is a simultaneous system of two equations in two unknowns. The implied condition
(5) becomes

1

3

L

K
=
1

3

which simpli�es to
L = K

Example 3 A monopolist with total cost function TC (Q) = Q2 sells his product in two
di¤erent countries. When he sells QA units of the good in country A he will obtain the
price

PA = 22� 3QA
for each unit. When he sells QB units of the good in country B he obtains the price

PB = 34� 4QB:
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How much should the monopolist sell in the two countries in order to maximize pro�ts?
To solve this problem we calculate �rst the pro�t function as the sum of the revenues

in each country minus the production costs. Total revenue in country A is

TRA = PAQA = (22� 3QA)QA
Total revenue in country B is

TRB = PBQB = (34� 4QB)QB
Total production costs are

TC = (QA +QB)
2

Therefore the pro�t is

�(QA; QB) = (22� 3QA)QA + (34� 4QB)QB � (QA +QB)2 ;
a quadratic function in QAand QB. In order to �nd the pro�t maximum we must �nd the
critical points, i.e., we must solve the �rst order conditions

@�

@QA
= �3QA + (22� 3QA)� 2 (QA +QB) = 22� 8QA � 2QB = 0

@�

@QB
= �4QB + (34� 4QB)� 2 (QA +QB) = 34� 2QA � 10QB = 0

or

8QA + 2QB = 22 (8)

2QA + 10QB = 34:

Thus we have to solve a linear simultaneous system of two equations in two unknowns.

3 Simultaneous systems of equations

3.1 Linear systems

We illustrate four methods to solve a linear system of equations using the example

5x+ 7y = 50 (9)

4x� 6y = �18

3.1.1 Using the slope-intercept form

We rewrite both linear equations in slope-intercept form

7y = 50� 5x

y =
50

7
� 5
7
x

4x� 6y = �18
4x+ 18 = 6y

y =
2

3
x+ 3
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2

3

4

5

6

7

8

2 0 2 4 6x

The solutions to each equation form a line, which we have now described as the graph of
linear functions. At the intersection point of the two lines the two linear functions must
have the same y-value. Hence

50

7
� 5
7
x = y =

2

3
x+ 3

50

7
� 3 =

2

3
x+

5

7
x j � 3� 7

150� 63 = 14x+ 15x

87 = 29x

x =
87

29
= 3

We have found the value of x in a solution. To calculate the value of y we use one of the
linear functions in slope-intercept form

y =
2

3
� 3 + 3 = 5

The solution to the system of equations is x� = 3; y� = 5
It is strongly recommended to check the result for the original system of equations.

5� 3 + 7� 5 = 15 + 35 = 50

4� 3� 6� 5 = 12� 30 = �18

3.1.2 The method of substitution

First we solve one of the equations in (9), say the second, for one of the variables, say y:

4x� 6y = �18
4x+ 18 = 6y

y =
4

6
x+ 3 =

2

3
x+ 3 (10)

Then we replace y in the other equation by the result. (Do not forget to place brackets
around the expression.) We obtain an equation in only one variable, x, which we solve
for x.
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5x+ 7y = 50

5x+ 7

�
2

3
x+ 3

�
= 50

5x+
14

3
x+ 21 = 50

15

3
x+

14

3
x+ 21 = 50

29

3
x = 50� 21 = 29

x =
3

29
� 29 = 3

We have found x and can now use (10) to �nd y:

y =
2

3
x+ 3 =

2

3
� 3 + 3 = 5

Hence the solution is x = 3; y = 5.

3.1.3 The method of elimination

To eliminate x we proceed in two stages: First we multiply the �rst equation by the coef-
�cient of x in the second equation and we multiply the second equation by the coe¢ cient
of x in the �rst equation

5x+ 7y = 50 j � 4
4x� 6y = �18 j � 5

20x+ 28y = 200

20x� 30y = �90

Then we subtract the second equation from the �rst equation

20x+ 28y = 200
20x� 30y = �90 j�
0 + 28y � (�30y) = 200� (�90)
58y = 290
y = 290

58
= 5

Having found y we use one of the original equations to �nd x

5x+ 7y = 50

5x+ 35 = 50

5x = 15

x = 3
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Instead of �rst eliminating x we could have �rst eliminated y:

5x+ 7y = 50 j � 6
4x� 6y = �18 j � 7

30x+ 42y = 300

28x� 42y = �126 j+
58x = 174

x = 3

3.1.4 Cramer�s rule

This is a little preview on linear algebra. In linear algebra the system of equations is
written as �

5 7
4 �6

� �
x
y

�
=

�
50

�18

�
where

�
x1
x2

�
and

�
50

�18

�
are so-called columns vectors, simply two numbers written

below each other and surrounded by square brackets.
�
5 7
4 �6

�
is the 2 � 2-matrix

of coe¢ cients. A 2 � 2-matrix is a system of four numbers arranged in a square and
surrounded by square brackets.
With each 2� 2-matrix

A =

�
a b
c d

�
we associate a new number called the determinant

detA =

���� a b
c d

���� = ad� cb
Notice that the determinant is indicated by vertical lines in contrast to square brackets for
a matrix.
For instance, ���� 5 7

4 �6

���� = 5� (�6)� 4� 7 = �30� 28 = �58
Cramer�s rule uses determinants to give an explicit formula for the solution of a linear

simultaneous system of equations of the form

ax+ by = e

cx+ dy = f

or �
a b
c d

� �
x
y

�
=

�
e
f

�
:
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Namely,

x� =

���� e b
f d

�������� a b
c d

���� =
ed� bf
ad� bc y� =

���� a e
c f

�������� a b
c d

���� =
af � ce
ad� bc

Thus x� and y� are calculated as the quotients of two determinants. In both cases we
divide by the determinant of the matrix of the coe¢ cients. For x� the determinant in
the numerator is the determinant of the matrix obtained by replacing in the matrix of
coe¢ cients the coe¢ cients a and c of x by the constant terms e and f , i.e., the �rst
column is replaced by the column vector with the constant terms. Similarly, for y� the
determinant in the numerator is the determinant of the matrix obtained by replacing in
the matrix of coe¢ cients the coe¢ cients b and d of y by the constant terms e and f , i.e.,
the second column is replaced by the column vector with the constant terms.
The method works only if the determinant in the denominator is not zero.
In our example,

x� =

���� 50 7
�18 �6

�������� 5 7
4 �6

���� =
50� (�6)� (�18)� 7
5� (�6)� 4� 7 =

�300 + 126
�30� 28 =

�174
�58 = 3

y� =

���� 5 50
4 �18

�������� 5 7
4 �6

���� =
5� (�18)� 4� 50
5� (�6)� 4� 7 =

�90� 200
�58 =

�290
�58 = 5

Exercise 1 Use the above methods to �nd the optimum in Example 8

3.1.5 Existence and uniqueness.

A linear simultaneous system of equations

ax+ by = e

cx+ dy = f

can have zero, exactly one or in�nitely many solution. To see that only these cases can
arise, bring both equations into slope-intercept form1

y =
e

b
� a
b
x

y =
f

d
� c

d
x

If the slopes of these two linear functions are the same, they describe identical or parallel
lines. The slopes are identical when a

b
= c

d
, i.e., when the determinant of the matrix of

1We assume here for simplicity that the coe¢ cients b and d are not zero. The arguments can be easily
extended to these cases, except when all four coe¢ cients are zero. The latter case is trivial - either there
is no solution or all pairs of numbers (x; y) are solutions.
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coe¢ cients ad� cb is zero. If in addition the intercepts are equal, both equations describe
the same line. In this case all points (x; y) on the line are solutions. If the intercepts are
di¤erent the two equations describe parallel lines. These do not intersect and hence there
is no solution.

Example 4

x+ 2y = 3

2x+ 4y = 4

has no solution: The two lines

y =
3

2
� 1
2
x

y = 1� 1
2
x

are parallel

1

0

2

2 1 1 2 3 4 5x

There is no common solution. Trying to �nd one yields a contradiction

3

2
� 1
2
x = y = 1� 1

2
x j+ 1

2
x

3

2
= 1

3.2 One equation non-linear, one linear

Consider, for instance,

y2 + x� 1 = 0

y +
1

2
x = 1

In this case we solve the linear equation for one of the variables and substitute the result
into the non-linear equation. As a result we obtain one non-linear equation in a single
unknown. This makes the problem simpler, but admittedly some luck is needed to solve
the non-linear equation in one variable. Solving the linear equation for x can sometimes
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give a simpler non-linear equation than solving for y and vice versa. One may have to try
both possibilities. In our example it is convenient to solve for x:

1

2
x = 1� y
x = 2� 2y

y2 + (2� 2y)� 1 = y2 � 2y + 1 = (y � 1)2 = 0

So the unique solution is y� = 1 and x� = 2� 2� 1 = 0.

3.3 Two non-linear equations

There is no general method. One needs to memorize some tricks which work in special
cases.
In the example of pro�t-maximization with a Cobb-Douglas production function we

were led to the system

1

6
K� 5

6L
1
2 =

1

12
1

2
K

1
6L�

1
2 =

3

12
:

This is a simultaneous system of two equations in two unknowns which looks hard to
solve. However, as we have seen, division of the two equations shows that L = K must
hold in a critical point.
We can substitute this into, say, the �rst equation and obtain

1

12
=

1

6
K� 5

6L
1
2 =

1

6
K� 5

6K
1
2 =

1

6
K� 5

6
+ 3
6 =

1

6
K� 2

6 =
1

6
K� 1

3

K� 1
3 =

1

2
1
3
p
K

=
1

2
3
p
K = 2

K = 23 = 8

Thus the solution to the �rst order conditions (and, in fact, the optimum) isK� = L� = 8.

Remark 1 This method works with any Cobb-Douglas production function Q (K;L) =
KaLb where the indices a and b are positive and sum to less than 1.

Remark 2 The �rst order conditions (6) and (7) form a �hidden�linear system of equa-
tions. Namely, if you take the logarithms (introduced later!) you get the system

ln
1

6
� 5
6
lnK +

1

2
lnL = ln

1

12

ln
1

2
+
1

5
lnK � 1

2
lnL = ln

3

12

which is linear in lnK and lnL. One can solve this system for lnK and lnL, which then
gives us the values for L and K. 10


