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“Since the fabric of the universe is most perfect, and is the work of a most
perfect creator, nothing whatsoever takes place in the universe in which some

form of maximum or minimum does not appear.”
Leonhard Euler, 1744

1 Objective

Two types of optimization problems frequently occur in economics: unconstrained opti-
mization problems like profit maximization problems and constrained optimization prob-
lems like the utility maximization problem of consumer constrained by a budget. In
this handout we discuss the main step to solve an unconstrained optimization problem
- namely to find the two “first order conditions” and how to solve them. The solutions
for this system of two equations in two unknowns can be local maxima, minima or sad-
dle points. How to distinguish between these types (“second order conditions”) will be
discussed in the next handout.

In order to solve the first order conditions one has to solve a simultaneous system of
equations. We will review methods to solve linear simultaneous systems.

Thereafter we develop the Lagrangian approach for constrained optimization problems.

2 Optimization problems

2.1 Unconstrained optimization

Suppose we want to find the absolute maximum of a function

Z:f(xay)

in two variables, i.e., we want to find the pair of numbers (z*,y*) such that

[ y") > f(xy)

holds for all (x,y). If (z*,y*) is such a maximum the following must hold: If we freeze
the variable y at the optimal value y* and vary only the variable x then the function

f(z,y")

— which is now just a function in just one variable — has a maximum at z*. Typically the
maximum of this function in one variable will be a critical point. Hence we expect the



partial derivative % to be zero at the optimum. Similarly we expect the partial derivative
g—; to be zero at the optimum. We are thus led to the first order conditions

0z _ 0
ox |z=z*,y=y*
0z _ 0
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which must typically be satisfied. We speak of first order conditions because only the
first derivatives are involved. The conditions do not tell us whether we have a maximum,
a minimum or a saddle point. To find out the latter we will have to look at the second
derivatives and the so-called “second order conditions”, as will be discussed in a later
lecture.

Example 1 Consider a price-taking firm with the production function @ (K, L). Let r
be the interest rate (the price of capital K), let w be the wage rate (the price of labour L)
and let P be the price of the output the firm is producing. When the firm uses K units of
capital and L units labour she can produce @ (K, L) units of the output and hence make
a revenue of

PxQ(K,L)

by selling each unit of output at the market price P. Her production costs will then be
her total expenditure on the inputs capital and labour

rK +wL.
Her profit will be the difference
II(K,L)=PQ(K,L)—rK —rL.

The firm tries to find the input combination (K™, L*) which maximizes her profit. To find
it we want to solve the first order conditions

on_aQ
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These conditions are intuitive: Suppose for instance P% —r > 0. % is the marginal
product of capital, i.e., it tells us how much more can be produced by using one more
unit of capital. P g—g is the marginal increase in revenue when one more unit of capital is
used and the additional output is sold on the market. r is the marginal cost of using one
more unit of capital. Pg—?( — r > 0 means that the marginal profit from using one more
unit of capital is positive, i.e., it increases profits to produce more by using more capital
and therefore we cannot be in a profit optimum. Correspondingly, Pg—g —r < 0 would
mean that profit can be increased by producing less and using less capital. So (1) should
hold in the optimum. Similarly (2) should hold.



It is useful to rewrite the two first order conditions as

oQ r
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Thus, for both inputs it must be the case that the marginal product is equal to the price
ratio of input- to output price. When we divide here the two left-hand sides and equate
them with the quotient of the right hand sides we obtain as a consequence

oQ /0Q r / (R (5)
OK/ oL P/ P w
so the marginal rate of substitution must be equal to the price ratio of the input price
(which is the relative price of capital in terms of labour).

Example 2 Let us be more specific and assume that the production function is
Q(K,L) = K¢ L>

and that the output- and input prices are P =12, r = 1 and w = 3. Then
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The first order conditions (3) and (4) become

1 5 1

SKiLE =

6 12 (6)
1 1 1 3

SKALE = 2

S 12 (7)

This is a simultaneous system of two equations in two unknowns. The implied condition
(5) becomes

1L 1

3K 3
which simplifies to

L=K

Example 3 A monopolist with total cost function TC (Q) = Q? sells his product in two
different countries. When he sells ()4 units of the good in country A he will obtain the
price

Py=22-30Q4

for each unit. When he sells (5 units of the good in country B he obtains the price

Pp =34 — 4Qp.

3



How much should the monopolist sell in the two countries in order to maximize profits?
To solve this problem we calculate first the profit function as the sum of the revenues
in each country minus the production costs. Total revenue in country A is

TRa = PaQa = (22— 30Q4)Qa
Total revenue in country B is
TRp = PpQp = (34 — 4Qp) U5
Total production costs are
TC = (Qa+Qs)’
Therefore the profit is
I1(Qa:Qp) = (22 = 3Q.4) Qa + (34 —4Q5) Qp — (Qa + Qp)”,

a quadratic function in ) 4and Q. In order to find the profit maximum we must find the
critical points, i.e., we must solve the first order conditions

O 304+ (22— 3Q4) — 2(Qa+Qp) = 22— 8Q4 — 2Qp = 0
Q.

L 4Qp + (34— 4Qp) — 2(Qa + Qp) = 34— 204 — 10Q5 = 0
Qs

or

8Qa+2Qp = 22 (8)
204 +10Q — 34.

Thus we have to solve a linear simultaneous system of two equations in two unknowns.
3 Simultaneous systems of equations

3.1 Linear systems

We illustrate four methods to solve a linear system of equations using the example

b+ Ty = 50 9)
dr — 6y = —18

3.1.1 Using the slope-intercept form

We rewrite both linear equations in slope-intercept form

7y = 50—bzx

50 5

= ———x

Y 77
dr — 6y = —18
dr+18 = 6y

2
y = §x—|—3
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The solutions to each equation form a line, which we have now described as the graph of
linear functions. At the intersection point of the two lines the two linear functions must
have the same y-value. Hence

50 5 2 43
— — = = = —X
77 Y73
50 2 5
150 — 63 = 14z + 15z
87 = 29z
87
et —:3
T

We have found the value of z in a solution. To calculate the value of y we use one of the
linear functions in slope-intercept form

2
==-x3+3=5
y=gxot

The solution to the system of equations is * = 3, y* =5
It is strongly recommended to check the result for the original system of equations.

5X3+7x5 = 15+35=50
4x3—-6x5 = 12-30=-18

3.1.2 The method of substitution

First we solve one of the equations in (9), say the second, for one of the variables, say y:

dr — 6y = —18
dr +18 = 6y
4 2
y = 61:4—3:53:—1-3 (10)

Then we replace y in the other equation by the result. (Do not forget to place brackets
around the expression.) We obtain an equation in only one variable, z, which we solve
for x.



Sr+ Ty = 50
2
ox + 7 (595 + 3) = 50

14
5£B—|—§33+21 = 50

15 14
§x+§x+21 = 50
§m = 50—-21=29
3
T = i><29=3

29

We have found = and can now use (10) to find y:

2 2
y:§x+3:§x3—|—3:5

Hence the solution is z = 3, y = 5.

3.1.3 The method of elimination

To eliminate x we proceed in two stages: First we multiply the first equation by the coef-
ficient of x in the second equation and we multiply the second equation by the coefficient
of x in the first equation

5+ Ty = 50 | x 4

4r — 6y = —18 | X 5
20z + 28y = 200
20z — 30y = —90

Then we subtract the second equation from the first equation

20z + 28y = 200
20z — 30y = —90 |-

0+ 28y — (—30y) = 200 — (—90)
58y = 290

Having found y we use one of the original equations to find z

or+ Ty = 50
S5t +35 = 50
5 = 15

r = 3



Instead of first eliminating x we could have first eliminated y:

5+ Ty = 50 | x 6

dr —6y = —18 | x 7
30x + 42y = 300
28v — 42y = —126 | +
58 = 174
r = 3

3.1.4 Cramer’s rule

This is a little preview on linear algebra. In linear algebra the system of equations is

written as
5 7 T | 50
4 —6 y | | —18

50 . .
where [ il } and [ 18 } are so-called columns vectors, simply two numbers written
) _

below each other and surrounded by square brackets. { Z _g 1 is the 2 x 2-matrix

of coefficients. A 2 x 2-matrix is a system of four numbers arranged in a square and
surrounded by square brackets.
With each 2 x 2-matrix

a b
a=[7 4]
we associate a new number called the determinant
detA=1]“ Z '—ad—cb

Notice that the determinant is indicated by vertical lines in contrast to square brackets for
a matriz.
For instance,

‘Z _g ‘:5><(—6)—4><7:—30—28:—58

Cramer’s rule uses determinants to give an explicit formula for the solution of a linear
simultaneous system of equations of the form

ar+by = e
cr+dy =

or



Namely,
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Thus z* and y* are calculated as the quotients of two determinants. In both cases we
divide by the determinant of the matrix of the coefficients. For xz* the determinant in
the numerator is the determinant of the matrix obtained by replacing in the matrix of
coefficients the coefficients a and ¢ of x by the constant terms e and f, i.e., the first
column is replaced by the column vector with the constant terms. Similarly, for y* the
determinant in the numerator is the determinant of the matrix obtained by replacing in
the matrix of coefficients the coefficients b and d of y by the constant terms e and f, i.e.,
the second column is replaced by the column vector with the constant terms.

The method works only if the determinant in the denominator is not zero.

In our example,

50 7
. ’—18 —6‘:5O><(—6)—(—18)><7:—300+126:—174:3
‘5 7‘ 5x(—6)—4x7 —30 — 28 —58
4 —6
5 50
. ’4 —18’_5><(—18)—4><50_—90—200_—290_5
YT 75 71 hx(=6)—4x7 -8 58
e

Exercise 1 Use the above methods to find the optimum in Example 8

3.1.5 Existence and uniqueness.
A linear simultaneous system of equations

ar+by = e
ce+dy = f

can have zero, exactly one or infinitely many solution. To see that only these cases can
arise, bring both equations into slope-intercept form!

e a
yo= "
_ [ e
ki
If the slopes of these two linear functions are the same, they describe identical or parallel
lines. The slopes are identical when § = ¢, i.e., when the determinant of the matrix of

'We assume here for simplicity that the coefficients b and d are not zero. The arguments can be easily
extended to these cases, except when all four coefficients are zero. The latter case is trivial - either there
is no solution or all pairs of numbers (z,y) are solutions.



coefficients ad — c¢b is zero. If in addition the intercepts are equal, both equations describe
the same line. In this case all points (z,y) on the line are solutions. If the intercepts are
different the two equations describe parallel lines. These do not intersect and hence there
is no solution.

Example 4
r+2y = 3
20 +4y = 4
has no solution: The two lines
31
b7 97"
1
= 1-=
Y 237
are parallel
k
2 1 0 1
-1

There is no common solution. Trying to find one yields a contradiction
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3.2 One equation non-linear, one linear

Consider, for instance,

v +r—1 = 0

L 1
In this case we solve the linear equation for one of the variables and substitute the result
into the non-linear equation. As a result we obtain one non-linear equation in a single
unknown. This makes the problem simpler, but admittedly some luck is needed to solve
the non-linear equation in one variable. Solving the linear equation for x can sometimes



give a simpler non-linear equation than solving for y and vice versa. One may have to try
both possibilities. In our example it is convenient to solve for x:
1

“ro= 1-—
27 Y

r = 2-2y
VH2-29) -1 = ¥ —2+1=(y-1)>=0

So the unique solution is y* =1 and z* =2 -2 x 1 = 0.

3.3 Two non-linear equations

There is no general method. One needs to memorize some tricks which work in special
cases.

In the example of profit-maximization with a Cobb-Douglas production function we
were led to the system

lg-tpy = L
6 12
iy = 2
2 12

This is a simultaneous system of two equations in two unknowns which looks hard to
solve. However, as we have seen, division of the two equations shows that L = K must
hold in a critical point.

We can substitute this into, say, the first equation and obtain

L gy lptgd s lpr lp
12 6 6 6 6 6
K-35 — 1

2
11
YK 2
VK = 2
K 23 =8

Thus the solution to the first order conditions (and, in fact, the optimum) is K* = L* = 8.

Remark 1 This method works with any Cobb-Douglas production function @ (K, L) =
K*L’ where the indices a and b are positive and sum to less than 1.

Remark 2 The first order conditions (6) and (7) form a “hidden” linear system of equa-
tions. Namely, if you take the logarithms (introduced later!) you get the system

1n1—§an—|—llnL = lni
6 6 2 12
1 1 1

n-+-InK—-—-InL = ln3
2 5 2 12

which is linear in In K and In L. One can solve this system for In K" and In L, which then
gives us the values for L and K. 10



