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Sample exam Solutions, Part A

OPTIMIZATION TECHNIQUES
FOR ECONOMISTS

Part A (You can gain no more than 55 marks on this part.)
Problem 1 (10 marks) Simplify

8Va2yy\/1/z
—2¢/i/yP V7

Solution 1

8V yy\/1/z Sy1 oz
= —4d5—5—
_2\3/51 /y5\/2 T3y 22

(((3a)_1)72 (2(1’2)_1> Ja=? = (9a2 X %a2> a® = ga7
Problem 2 (10 marks) Solve

Inz%? —0.5lnz = In 25

Solution 2 We have
5
In2z®? —05nz = 5 Inz —05lnz =2lnzx

and In25 = In 5% = 21n 5. Hence
2lnx =21nb

and so xz = 5.

Problem 3 (10 marks) Consider the function

y(o)=e™

i) Calculate and draw a sign diagram for the first derivative. Where is the function
increasing or decreasing? Are there any peaks or troughs? Does the function have a
(global) maximum? Is the function quasi concave?

ii) Calculate and draw a sign diagram for the second derivative. Where is the function
convex or concave? Are there any inflection points?
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Solution 3

a)y = —2ze~**. Thus the function has a unique critical point at zero. From the sign of

the derivative we see that the function is increasing to the left and decreasing to the right.
Hence z = 0 is the (global) maximum of the function. Let g (u) = e* and h (z) = —z?.
g (u) is increasing and h (u) is concave. As a monotone transformation of a concave
function the function y (z) = e*" = ¢ (h (z)) is quasi concave.

b) v’ = 2(—1+ 222) e *". The second derivative is zero at & = ﬂ:\%, in between it is
negative, outside positive. r = i\% are hence inflection points with the function concave
in between the roots and convex outside.

Problem 4 (10 marks) For the function

y =~z — 222

4

find the (global) maxima and minima a) on the interval [—1,1] and b) on the interval
(—4,4].

Solution 4 g
d—y:x3—4x:x(x2—4) =z(x+2)(z—2)
x
The function has critical points at x = 0, +2, —2. We have
y(£4) = 32
y(£2) = —4
y(0) = 0

On the interval [—2,2] the minima are hence at +2 and the maximum is at z = 0. On
the interval [—4,4] the minima are hence at £2 and the maxima are at z = £4.

Problem 5 (10 marks) Find the equation of the tangent plane of
z(z,y) = In(5z +y)

at the point (z*,y*, 2*) = (2,3, 2(2,3)).



Solution 5 z* =1n13

0z 5 0z B 5 5
or  bx+vy Orjwe—2y—3 bx2+3 13
0z 1 0z B 1 1
dy  bx+y Orja—2y—3 Hx2+3 13
The formula for the total differential at z =2,y = 3
0z 0z
dz = — dr + — dy
ox |z=2,y=3 ay le=2,y=3
yields the formula for the tangent
(:-Mn13) = 2 (@-2+ = (y—3)
e E A 13
5 1
= 224+ —y—1-Inl
SR TR T nls

Problem 6 (10 marks) Show that the function
u(z,y) =In(5z +y) +In(z +y)
1s concave.

Solution 6 We have

ou B 1 n 5
or  x+y Brty
ou 1 1
- — _l_
oy r+y dr+y
0%u 1 25
Ox (z+y)” (5 +y)
0%u 1 5
= — 5 — 5 <0
dzdy (x+1y)* (Bz+y)
0*u 1 5
oz 2 7 <0
Y (x +vy) (bx +1y)

Set a = (x+y) " and b= (52 4+ y)~". The Hessian of 4 is

—a? — 25b%> —a? — 5b?

H = —a? =50 —a®—1?

and hence
det H = (a?+25b%) (a® +0?) — (a® + 50%)°
= a* + 26a2b? 4 25b* — a* — 10a%0* — 25b* = (2a)% (2b)* > 0

We see that the leading principle minors of the Hessian have the right sign and so « is
concave, as was to be proved.



Problem 7 (10 marks) Find a solution to the differential equation

dx
ef'— =1

dt

/emdx = /tdt

1
T —t2 C
e 5 +

Solution 7

Problem 8 (10 marks) Solve the problem
1
max/ (1—2®—3d%)dt, z(0)=0,z(1) >0
0

Solution 8

F (1—2*—3?
F, = —2x
F, = -2z
d .
te = —2%
The Euler equation is
r=2I

This is a homogeneous linear differential equation of second order with constant coeffi-
cients. The characteristic polynomial is 72 — 1 = (r — 1) (r + 1). The general solution to
the Euler equation is hence

x(t) = Ae" + Be™"

To have x (t) = 0 we need A = —B. If x (1) > 0 we would need
Fp(1)=—-2i(1)=—-2(Ade—Be ') =0
which would imply Ae? = B = — A which can hold only if A = 0, contradicting x (1) > 0.
We see that the only solution is A = B =0 or z (t) = 0 for all .
Part B (You can gain no more than 15 marks on this part.)
Problem 9 (15 marks) For a consumer with the utility function
w(z,y) = — (10 — z)* — (16 — 2y)*

maximize his utility subject to the budget equation b—p,z—p,y < b when a) p, = p, = 25
and b = 100; b) p, = 60, p, = 25 and b = 100 or ¢) p, = p, = 1 and b = 100.
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Solution 9 In general the Lagrangian for this problem is
L=—(10—12)"— (16 — 29)* + A1 (b — pox — pyy) + Ao + A3y

which yields the first order conditions

oL
oL
oy~ 8By py =0

which must be satisfied together with the complementarity conditions

AL (b= pe7 — pyy)
)\21’ =0
)\3y =0
Notice that £ is a sum of concave functions and hence concave. The Kuhn-Tucker condi-
tions are hence sufficient for an optimum.
Typically we expect only the budget constraint to be binding. In this case Ay = Ay =0
and we obtain the first order conditions
2(10 —z) = M\ps
8(8—y) = Aipy

implying

2(10 —z)  pa
— == <—p, (10 — ) —4p, (8 — y) = 0 <= 10p, — 32p, = p,x — 4dp,y
8(8—y) py Y ) Y Yy Yy

which must be satisfied together with the budget equation

10py, — 32p, = pyx —4pyy
Pt +pyy = b

a) py = py = 25 and b = 100. The above two equations yield

10x25—32x25 = 251 —4 x 25y
25z + 25y = 100

or

10-32 = -4y
r+y = 4



Hence

r = 4—y
—22 = 4—-y—4y
26 = 5y
26
Y7 3
20 26 6
€T fry _ e — = — =
5 5 5

The non-negativity constraint for x is violated, hence there is no solution where only the
budget constraint binds.

Let us next assume that both the non-negativity constraint z > 0 and the budget
constraint are binding. So x = 0 and the budget equation implies 25y = 100 <—= y = 4.
Complementarity A3y = 0 implies A3 = 0. From the second first order condition

8(8—y) — 25\ =0
we get A\; = 8 (8 —4) /25 = 32/25. From the first first order condition

32
2(10 —0) — 25 x 2—5+>\2—0
we get Ay =32 —20=12 > 0.

Overall we get the solution (z*,y*) = (0,4), (A1, A2, A3) = (%, 12, O) > 0. With
these numbers we see that all Kuhn-Tucker conditions are satisfied. We have found the
optimum.

b) p, = 60, p, = 25 and b = 100. This is an even higher price on = than before. We
assume (z*,y*) = (0,4) and A3 = 0. Then the budget equation and the non-negativity
constraint for z are binding. It remains to check that all Lagrange multipliers are non-
negative. The second order conditions yields again A; = 32/25. The first second order

condition yields
32 32
2(10—0)—60><2—5+/\2:0<:>/\2:60>< %—20%56.8>0

We found the optimum.
c) p» = py = 1 and b = 100. If we assume that only the budget constraint binds we
get the two equations

10-32 = z—-4y

r+y = 100
Thus
r = 100 —y
22 = 100 — by
5y = 78
y = 718/5

z = 100—78/5
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which looks nice except that the second first order condtion yields with Ay = A3 = 0 that

2(10—1‘)—/\1]%—’—/\2 = 2(10—100+78/5)—>\1:0
— M\ =2(10—-100+78/5) ~ —148.8 < 0

which is ruled out.

A negative shadow price on the budget constraint suggest that it should not be binding
in optimum. Let us hence assume that no constraint is binding. Thus A\ = Ay = A3 = 0.
The first order conditions yield * = 10, y* = 8. Both quantities are strictly positive and
also satisfy the budget equation:

1x10+1x8 <100
Hence (z*,y*) = (10, 8) is the optimum.

Problem 10 (15 marks) Solve the problem
7
min/ (2 (t) — 3)% subjoct to & () = u(t), 2(0) = 2 (T) = 0, —1 <u(t) <1
0

Solution 10 The Hamiltonian is (because we want to maximize the negative of the in-
tegral)
H=—(x-3)"+qu

Notice that the Hamiltonian is concave in z and u. (Why?) We obtain because H is linear
in u
1 for ¢>0
arg max H=< €[-1,1] for ¢=0

—lsust —1 for ¢<0
Moreover, we need
OH
r = —=u
dq
OH
] = ——=-2(x-3
¢ ox (x=3)

It is natural to assume that z (¢) first increases as fast as possible (i.e., at rate & = 1)
until it it reaches the value x = 3 where — (z — 3)2 is minimized, stays at this value as
long as possible at this value and then decreases at the maximal rate & = 1 until z (f) = 0
at t = 7. This suggest the solution

t for 0<¢t<3 1 for 0<¢t<3
z(t) = 3 for 3<t<H4 u(t) = 0 for 3<t<4
3—t for 4<t<7 —1 for 4<t<7T



The optimal functions x (t) (black), u (t) (green) and ¢ (t) (red)

To verify the above conditions we want to find a corresponding function ¢ (t) such that
qg= —%—ZI holds. Because v must maximize the Hamiltonian we must have

>0 for 0<t<3
q(t) 0 for 3<t<4
<0 for 4<t<T7T

For t < 3 we have

e (e -3 =209

qt) = 2/(t—3)dt:t(t—6)+0

We must have ¢ (3) = 0 and so C' = 3 x 3 = 9, which yields ¢ (t) = > — 6t + 9 = (¢t — 3)*.
For 3 <t <4 we have

) o0H
1=y 7V
To have ¢ (3) = 0 we get ¢ (t) = 0 in this range. For ¢t > 4
H
i = = (2 () - 8) =271~ 8) =2(4~1)

q(t) = 2/(4—t)dt:t(8—t)+c

and since ¢ (4) =4 x4+ C =0 we get ¢ (t) = —t2 + 8 — 16 = — (t — 4)*. Overall,
(t—3)2 for 0<t<3
q(t) = 0 for 3<t<4
—(t—4)* for 4<t<7
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We see that all the conditions required by the optimal control approach are satisfied: w ()
maximizes the Hamiltonian for all ¢, = %—fl[, ¢ =—92 and z (0) = z (1) = 0. Because
the Hamiltonian has the required concavity requirements we conclude that we have found

the optimal solutions.

Part C

Problem 11 (20 marks) Sketch the graph of the area C' carved out by the two inequalities
P2+ y-17 < 4
P+ y+1)7° < 4

For any point (a,b) in the plane use the Lagrangian approach to determine the point
closest to (a,b) within or on the boundary of C. Why can you assume without loss of
generality that a,b > 07 How many cases do we have to consider? Give an argument why
you can assume without loss of generality that a,b > 0.

Solution 11 Four cases must be considered: No constraint is binding, one of the two
is binding, or both are binding. By symmetry it is sufficient to do the calculations for
(a,b) > 0. Instead of minimizing the distance we can maximize the negative of the square
of the distance and so the Lagrangian is

L=—(z—a)’—(y—0"+X\ (4—:1:2—(y—1)2)+)\2 (4—2®—(y+1)%
the FOC are
—2(x—a)—2Mx—2 2z = 0
—2(y—>b)—2M(y—1)—=2X(y+1) = 0
If no constraint is binding we set A\; = Ay = 0 and obtain z* = a, y* = b. This is the
solution if (a, b) is in the area C'. For (¢ > 0 and b > 0) only the constraint 2%+ (y + 1)* —
4 > 0 can be binding, which is obvious if one sketches C'. The FOC become, after setting
A =0
—2(z—a)—2Xx = 0
—2(y—b) =2\ (@y+1) = 0

Thus
Xz = —(x—a)
N = rT—a
x
y—>b
Ay = 2~
2 yT1
r—a  y-—b
T oy +1
(z—a)(y+1) = z(y—0b)
—ay+xr—a = —bx



4+ (1+y)? = 4
a?® + (1402 = 4d°
[a® + (1 + b)2] = 4a®

2a
€T g
a?+ (1+1b)°
2(1+0
y+1 = ( )
a2 + (14 b)°
For this to be a solution we need
2(1
(1+0) 1> 0
a2 + (1+b)*
2(1+0) > y/a2+(1+0b)?
4(1+0)% > a*+(1+0b)°
3(14+0)?7 > o
V3(1+b) > a

One can check that for —v/3 (14 b) < a < v/3(1 + b) both constraints are binding and
so the solution is z* = /3, y* = 0, where the two circles meet.

Problem 12 (20 marks) Two factors, capital, K (¢), and an extractive resource, R (),
are used to produce a good, @, according to the production function AK'~*R% where
0 < a < 1. The product may be consumed, yielding utility U (C') = InC, or it may be
invested as capital. The total amount of the extractive resource is Xy3. Maximize over the
finite horizon T utility

/OTlnC(t)dt

subject to X' = —R, X (0) = Xo, X (T) = 0, K’ = AK'"*R* — C, K (0) = Ko, C' > 0,
R > 0. (All parameters are assumed to be positive.)

Solution 12 See Kamian Schwartz p. 138. for more details.,
The Hamiltonian is, after substituting y = R/K

H=InC—-MKy+ X\ (AKy* - C)
which gives the FOC

oH 1
e _— = — — 1
0 5 "0 (1)
0 = aa—H = —)\1K + )\gaAKyail (2)

Y

d\ - o0H B

@~ oax )
dXs - 0H - o

E = _8_K = ANy — Ay (4)
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(3) yields that A; is constant. If K" # 0 then (2) yields

)\1 = )\QCYAyail
d\i  d)s o o dy
0 = — =—70aAy" XA (a— 1)y =—=
i~ ar T eadla =Dy
d)s (a—1)y > 2dy dy
22N, = I T a) 22
7 ot g gy
Substituting the first of the above equations into (4) we also get
% = MaAy*ly — MAy® = — (1 — o) Ay”
d)\y
— /A = —(1—a)Ay”
e (1—a)Ay
Thus, combining the last two results
dXs dy
- — 1 _ _J - 1 _ A (e
T = (1-a) Ly = —(1-a) Ay
dy
A A a+1
dt Y
dy
ot = —Adt
1
ya+1dy = — | Adt
T _
-y ¢ = —At—i—]{?l
!
o« 1
J OéAt+OZ]€1
d/\2 11—«
— /A = —(1l-a)Ay*"=———
dt/ ? (1 =) Ay at + ak /A
1 1 -«
Inx, = —(1— ———dt=———In(at ki/A) + k
A ( a>/at+ak1/A a n(at+ak/A)+k,
)\2 = ]{72 (Oét + O[k?l/A)i(lia)/a
and so
C = 1/A = ks (ot + aky JA) I/
K' = AKy*-C
1
K = AK—————— —ky (ot + ak; /A) 0/
aAt + ak; z(af +aki/A)
dK K
R gy y ) [l
i = Tira 00T
Exact solution is: s
t d 7_72 G |
K(t):_(jL )l—v S+ (t+d) Cy
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