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Sample exam Solutions, Part A

OPTIMIZATION TECHNIQUES
FOR ECONOMISTS

Part A (You can gain no more than 55 marks on this part.)

Problem 1 (10 marks) Simplify
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Problem 2 (10 marks) Solve

lnx5=2 � 0:5 ln x = ln 25

Solution 2 We have

lnx5=2 � 0:5 ln x = 5

2
lnx� 0:5 ln x = 2 lnx

and ln 25 = ln 52 = 2 ln 5. Hence
2 ln x = 2 ln 5

and so x = 5.

Problem 3 (10 marks) Consider the function

y (x) = e�x
2

i) Calculate and draw a sign diagram for the �rst derivative. Where is the function
increasing or decreasing? Are there any peaks or troughs? Does the function have a
(global) maximum? Is the function quasi concave?
ii) Calculate and draw a sign diagram for the second derivative. Where is the function
convex or concave? Are there any in�ection points?
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Solution 3
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a) y0 = �2xe�x2. Thus the function has a unique critical point at zero. From the sign of
the derivative we see that the function is increasing to the left and decreasing to the right.
Hence x = 0 is the (global) maximum of the function. Let g (u) = eu and h (x) = �x2.
g (u) is increasing and h (u) is concave. As a monotone transformation of a concave
function the function y (x) = e�x

2
= g (h (x)) is quasi concave.

b) y00 = 2 (�1 + 2x2) e�x2. The second derivative is zero at x = � 1p
2
; in between it is

negative, outside positive. x = � 1p
2
are hence in�ection points with the function concave

in between the roots and convex outside.

Problem 4 (10 marks) For the function

y =
1

4
x4 � 2x2

�nd the (global) maxima and minima a) on the interval [�1; 1] and b) on the interval
[�4; 4] :

Solution 4
dy

dx
= x3 � 4x = x

�
x2 � 4

�
= x (x+ 2) (x� 2)

The function has critical points at x = 0;+2;�2. We have

y (�4) = 32

y (�2) = �4
y (0) = 0

On the interval [�2; 2] the minima are hence at �2 and the maximum is at x = 0. On
the interval [�4; 4] the minima are hence at �2 and the maxima are at x = �4.

Problem 5 (10 marks) Find the equation of the tangent plane of

z (x; y) = ln (5x+ y)

at the point (x�; y�; z�) = (2; 3; z (2; 3)).
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Solution 5 z� = ln 13

@z

@x
=

5

5x+ y
,
@z

@x jx=2;y=3
=

5

5� 2 + 3 =
5

13
@z

@y
=

1

5x+ y
,
@z

@x jx=2;y=3
=

1

5� 2 + 3 =
1

13

The formula for the total di¤erential at x = 2; y = 3

dz =
@z

@x jx=2;y=3
dx+

@z

@y jx=2;y=3
dy

yields the formula for the tangent

(z � ln 13) =
5

13
(x� 2) + 1

13
(y � 3)

z =
5

13
x+

1

13
y � 1� ln 13

Problem 6 (10 marks) Show that the function

u (x; y) = ln (5x+ y) + ln (x+ y)

is concave.

Solution 6 We have

@u

@x
=

1

x+ y
+

5

5x+ y
@u

@y
=

1

x+ y
+

1

5x+ y

@2u

@x2
= � 1

(x+ y)2
� 25

(5x+ y)2
< 0

@2u

@x@y
= � 1

(x+ y)2
� 5

(5x+ y)2
< 0

@2u

@y2
= � 1

(x+ y)2
� 5

(5x+ y)2
< 0

Set a = (x+ y)�1 and b = (5x+ y)�1. The Hessian of û is

H =

�
�a2 � 25b2 �a2 � 5b2
�a2 � 5b2 �a2 � b2

�
and hence

detH =
�
a2 + 25b2

� �
a2 + b2

�
�
�
a2 + 5b2

�2
= a4 + 26a2b2 + 25b4 � a4 � 10a2b2 � 25b4 = (2a)2 (2b)2 > 0

We see that the leading principle minors of the Hessian have the right sign and so û is
concave, as was to be proved.
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Problem 7 (10 marks) Find a solution to the di¤erential equation

ex
dx

dt
= t

Solution 7 Z
exdx =

Z
tdt

ex =
1

2
t2 + ~C

x = ln

����12t2 + ~C

����
Problem 8 (10 marks) Solve the problem

max

Z 1

0

�
1� x2 � _x2

�
dt, x (0) = 0, x (1) � 0

Solution 8

F =
�
1� x2 � _x2

�
Fx = �2x
F _x = �2 _x

d

dt
F _x = �2�x

The Euler equation is
x = �x

This is a homogeneous linear di¤erential equation of second order with constant coe¢ -
cients. The characteristic polynomial is r2 � 1 = (r � 1) (r + 1). The general solution to
the Euler equation is hence

x (t) = Aer +Be�r

To have x (t) = 0 we need A = �B. If x (1) > 0 we would need

F _x (1) = �2 _x (1) = �2
�
Ae�Be�1

�
= 0

which would imply Ae2 = B = �A which can hold only if A = 0; contradicting x (1) > 0.
We see that the only solution is A = B = 0 or x (t) = 0 for all t.

Part B (You can gain no more than 15 marks on this part.)

Problem 9 (15 marks) For a consumer with the utility function

u (x; y) = � (10� x)2 � (16� 2y)2

maximize his utility subject to the budget equation b�pxx�pyy � b when a) px = py = 25
and b = 100; b) px = 60; py = 25 and b = 100 or c) px = py = 1 and b = 100.
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Solution 9 In general the Lagrangian for this problem is

L =� (10� x)2 � (16� 2y)2 + �1 (b� pxx� pyy) + �2x+ �3y

which yields the �rst order conditions

@L
@x

= 2 (10� x)� �1px + �2 = 0
@L
@y

= 8 (8� y)� �1py + �3 = 0

which must be satis�ed together with the complementarity conditions

�1 (b� pxx� pyy) = 0

�2x = 0

�3y = 0

Notice that L is a sum of concave functions and hence concave. The Kuhn-Tucker condi-
tions are hence su¢ cient for an optimum.
Typically we expect only the budget constraint to be binding. In this case �1 = �2 = 0

and we obtain the �rst order conditions

2 (10� x) = �1px

8 (8� y) = �1py

implying

2 (10� x)
8 (8� y) =

px
py
() py (10� x)� 4px (8� y) = 0() 10py � 32px = pyx� 4pyy

which must be satis�ed together with the budget equation

10py � 32px = pyx� 4pyy
pxx+ pyy = b

a) px = py = 25 and b = 100. The above two equations yield

10� 25� 32� 25 = 25x� 4� 25y
25x+ 25y = 100

or

10� 32 = x� 4y
x+ y = 4
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Hence

x = 4� y
�22 = 4� y � 4y
26 = 5y

y =
26

5

x =
20

5
� 26
5
= �6

5

The non-negativity constraint for x is violated, hence there is no solution where only the
budget constraint binds.
Let us next assume that both the non-negativity constraint x � 0 and the budget

constraint are binding. So x = 0 and the budget equation implies 25y = 100() y = 4.
Complementarity �3y = 0 implies �3 = 0. From the second �rst order condition

8 (8� y)� 25�1 = 0

we get �1 = 8 (8� 4) =25 = 32=25. From the �rst �rst order condition

2 (10� 0)� 25� 32
25
+ �2 = 0

we get �2 = 32� 20 = 12 > 0.
Overall we get the solution (x�; y�) = (0; 4), (�1; �2; �3) =

�
32
25
; 12; 0

�
� 0: With

these numbers we see that all Kuhn-Tucker conditions are satis�ed. We have found the
optimum.
b) px = 60; py = 25 and b = 100. This is an even higher price on x than before. We

assume (x�; y�) = (0; 4) and �3 = 0. Then the budget equation and the non-negativity
constraint for x are binding. It remains to check that all Lagrange multipliers are non-
negative. The second order conditions yields again �1 = 32=25. The �rst second order
condition yields

2 (10� 0)� 60� 32
25
+ �2 = 0() �2 = 60�

32

25
� 20 � 56:8 > 0

We found the optimum.
c) px = py = 1 and b = 100. If we assume that only the budget constraint binds we

get the two equations

10� 32 = x� 4y
x+ y = 100

Thus

x = 100� y
22 = 100� 5y
5y = 78

y = 78=5

x = 100� 78=5
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which looks nice except that the second �rst order condtion yields with �2 = �3 = 0 that

2 (10� x)� �1px + �2 = 2 (10� 100 + 78=5)� �1 = 0
() �1 = 2 (10� 100 + 78=5) � �148: 8 < 0

which is ruled out.
A negative shadow price on the budget constraint suggest that it should not be binding

in optimum. Let us hence assume that no constraint is binding. Thus �1 = �2 = �3 = 0.
The �rst order conditions yield x� = 10, y� = 8. Both quantities are strictly positive and
also satisfy the budget equation:

1� 10 + 1� 8 < 100

Hence (x�; y�) = (10; 8) is the optimum.

Problem 10 (15 marks) Solve the problem

min

Z 7

0

(x (t)� 3)2 subject to _x (t) = u (t) , x (0) = x (7) = 0, � 1 � u (t) � 1

Solution 10 The Hamiltonian is (because we want to maximize the negative of the in-
tegral)

H = � (x� 3)2 + qu
Notice that the Hamiltonian is concave in x and u: (Why?) We obtain because H is linear
in u

arg max
�1�u�1

H =

8<:
1 for q > 0

2 [�1; 1] for q = 0
�1 for q < 0

Moreover, we need

_x =
@H

@q
= u

_q = �@H
@x

= �2 (x� 3)

It is natural to assume that x (t) �rst increases as fast as possible (i.e., at rate _x = 1)
until it it reaches the value x = 3 where � (x� 3)2 is minimized, stays at this value as
long as possible at this value and then decreases at the maximal rate _x = 1 until x (t) = 0
at t = 7. This suggest the solution

x (t) =

8<:
t for 0 � t � 3
3 for 3 � t � 4

3� t for 4 � t � 7
u (t) =

8<:
1 for 0 � t � 3
0 for 3 � t � 4
�1 for 4 � t � 7
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The optimal functions x (t) (black), u (t) (green) and q (t) (red)

To verify the above conditions we want to �nd a corresponding function q (t) such that
_q = �@H

@x
holds. Because u must maximize the Hamiltonian we must have

q (t)

8<:
> 0 for 0 � t � 3
0 for 3 � t � 4
< 0 for 4 � t � 7

For t � 3 we have

_q = �@H
@x

= � (�2 (x (t)� 3)) = 2 (t� 3)

q (t) = 2

Z
(t� 3) dt = t (t� 6) + C

We must have q (3) = 0 and so C = 3� 3 = 9, which yields q (t) = t2 � 6t+ 9 = (t� 3)2.
For 3 � t � 4 we have

_q = �@H
@x

= 0

To have q (3) = 0 we get q (t) = 0 in this range. For t � 4

_q = �@H
@x

= � (�2 (x (t)� 3)) = 2 (7� t� 3) = 2 (4� t)

q (t) = 2

Z
(4� t) dt = t (8� t) + C

and since q (4) = 4� 4 + C = 0 we get q (t) = �t2 + 8t� 16 = � (t� 4)2. Overall,

q (t) =

8<:
(t� 3)2 for 0 � t � 3
0 for 3 � t � 4

� (t� 4)2 for 4 � t � 7
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We see that all the conditions required by the optimal control approach are satis�ed: u (t)
maximizes the Hamiltonian for all t, _x = @H

@q
, _q = �@H

@x
and x (0) = x (1) = 0: Because

the Hamiltonian has the required concavity requirements we conclude that we have found
the optimal solutions.

Part C
Problem 11 (20 marks) Sketch the graph of the area C carved out by the two inequalities

x2 + (y � 1)2 � 4

x2 + (y + 1)2 � 4

For any point (a; b) in the plane use the Lagrangian approach to determine the point
closest to (a; b) within or on the boundary of C. Why can you assume without loss of
generality that a; b � 0? How many cases do we have to consider? Give an argument why
you can assume without loss of generality that a; b � 0.

Solution 11 Four cases must be considered: No constraint is binding, one of the two
is binding, or both are binding. By symmetry it is su¢ cient to do the calculations for
(a; b) � 0. Instead of minimizing the distance we can maximize the negative of the square
of the distance and so the Lagrangian is

L = � (x� a)2 � (y � b)2 + �1
�
4� x2 � (y � 1)2

�
+ �2

�
4� x2 � (y + 1)2

�
the FOC are

�2 (x� a)� 2�1x� 2�2x = 0

�2 (y � b)� 2�1 (y � 1)� 2�2 (y + 1) = 0

If no constraint is binding we set �1 = �2 = 0 and obtain x� = a, y� = b. This is the
solution if (a; b) is in the area C. For (a � 0 and b > 0) only the constraint x2+(y + 1)2�
4 � 0 can be binding, which is obvious if one sketches C. The FOC become, after setting
�1 = 0

�2 (x� a)� 2�2x = 0

�2 (y � b)� 2�2 (y + 1) = 0

Thus

�2x = � (x� a)

�2 = �x� a
x

�2 = �y � b
y + 1

x� a
x

=
y � b
y + 1

(x� a) (y + 1) = x (y � b)
�ay + x� a = �bx

(1 + b)x = (1 + y) a

1 + y = (1 + b)
x

a

9



x2 + (1 + y)2 = 4

a2x2 + (1 + b)2 x2 = 4a2�
a2 + (1 + b)2

�
x2 = 4a2

x =
2aq

a2 + (1 + b)2

y + 1 =
2 (1 + b)q
a2 + (1 + b)2

For this to be a solution we need

2 (1 + b)q
a2 + (1 + b)2

� 1 � 0

2 (1 + b) �
q
a2 + (1 + b)2

4 (1 + b)2 � a2 + (1 + b)2

3 (1 + b)2 � a2p
3 (1 + b) � a

One can check that for �
p
3 (1 + b) � a �

p
3 (1 + b) both constraints are binding and

so the solution is x� =
p
3, y� = 0, where the two circles meet.

Problem 12 (20 marks) Two factors, capital, K (t) ; and an extractive resource, R (t) ;
are used to produce a good, Q; according to the production function AK1��Ra where
0 < � < 1. The product may be consumed, yielding utility U (C) = lnC; or it may be
invested as capital. The total amount of the extractive resource is X0. Maximize over the
�nite horizon T utility Z T

0

lnC (t) dt

subject to X 0 = �R, X (0) = X0, X (T ) = 0, K 0 = AK1��R� � C, K (0) = K0, C > 0,
R > 0. (All parameters are assumed to be positive.)

Solution 12 See Kamian Schwartz p. 138. for more details.,
The Hamiltonian is, after substituting y = R=K

H = lnC � �1Ky + �2 (AKy� � C)

which gives the FOC

0 =
@H

@C
=
1

C
� �2 (1)

0 =
@H

@y
= ��1K + �2�AKy

��1 (2)

d�1
dt

= �@H
@X

= 0 (3)

d�2
dt

= �@H
@K

= �1y � �2Ay� (4)
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(3) yields that �1 is constant. If K 6= 0 then (2) yields

�1 = �2�Ay
��1

0 =
d�1
dt

=
d�2
dt
�Ay��1 + �2�A (�� 1) y��2

dy

dt
d�2
dt
=�2 = �(�� 1) y

���2

y��1
dy

dt
= (1� �) dy

dt
=y

Substituting the �rst of the above equations into (4) we also get

d�2
dt

= �2�Ay
��1y � �2Ay� = � (1� �)Ay�

d�2
dt
=�2 = � (1� �)Ay�

Thus, combining the last two results

d�2
dt
=�2 = (1� �) dy

dt
=y = � (1� �)Ay�

dy

dt
= �Ay�+1

dy

y�+1
= �AdtZ

1

y�+1
dy = �

Z
Adt

� 1
�
y�� = �At+ k1

y� =
1

�At+ �k1

d�2
dt
=�2 = � (1� �)Ay� = � 1� �

�t+ �k1=A

ln�2 = � (1� �)
Z

1

�t+ �k1=A
dt = �1� �

�
ln (�t+ �k1=A) + k2

�2 = k2 (�t+ �k1=A)
�(1��)=�

and so

C = 1=�2 = k2 (�t+ �k1=A)
(1��)=�

K 0 = AKy� � C

K 0 = AK
1

�At+ �k1
� k2 (�t+ �k1=A)(1��)=�

dK

dt
= 


K

t+ d
� � (t+ d)(1��)=�

Exact solution is:

K (t) = �(t+ d)

��1+�+
�

�
+1

1
�
� 


� + (t+ d)
 C1
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